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a b s t r a c t

The primary quantum mechanical equation of motion entails that measurements typically do not have
determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories
(e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse
the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that
leaves the superpositions intact. This is the tails problem. There are several ways of making this problem
more precise. But many authors dismiss the problemwithout considering the more severe formulations.
Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails
problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been
adequately addressed. The third (multiverse tails problem) reformulates the second to account for
recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma)
shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces
new conflict with relativity theory.
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1. Dynamical collapse theories and the problem of outcomes

Quantum mechanics suffers from the measurement problem.
There are several ways of stating this problem. A useful formula-
tion is the problem of outcomes (Maudlin, 1995). Two propositions
made plausible by quantum mechanics are prima facie incompa-
tible with a third independently plausible proposition:

(A) The wave-function of a system is complete in the sense that
the wave-function specifies (directly or indirectly) all of the
physical properties of a system.

(B) The wave-function always evolves in accord with a linear
dynamical equation (e.g. the Schrödinger equation).

(C) Measurements always (or at least usually) have single deter-
minate outcomes i.e. at the end of the measurement the
measuring device indicates a definite physical state.

Propositions (A)–(C) cannot all be true at once. To illustrate: let
the wave-function of a (macroscopic) measuring device d be
described by |ready4d meaning that d is ready to measure the
physical state of some particle. Let |04 and |14 describe the
distinct values of some two-valued property (e.g., spin); d is
designed to detect which of these two states a particle is in. If
the wave-function for d and particle p is initially |ready4d|04p

then switching d on (i.e. performing the measurement) gives
|‘0’4d|04p where |‘0’4d means that d has detected that p is in
state |04 (and displays this e.g. using a pointer). Similarly, if the
initial wave-function is instead |ready4d|14p then turning the
device on gives |‘1’4d|14p. Now let the initial wave-function of p
be the linear superposition a|04pþb|14p such that a and b are
nonzero and |a|2þ |b|2¼1. Then the complete initial wave-function
is as follows:

jready4d aj04pþ bj14p
� � ð1Þ

The linearity of the dynamics (B) guarantees that if d is switched
on then the microscopic superposition will be magnified up into
the macroscopic object yielding an entangled superposition:

aj0004dj04pþ bj0104dj14p ð2Þ
Since d only displays three possible states (ready, ‘0’ and ‘1’), (2)
does not represent a single definite measurement outcome. Thus,
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if propositions (A) and (B) are true then (given the kinds of
physical states that actually obtain) proposition (C) cannot be
true. But (C) is extremely plausible: it is apparently confirmed by
observations of the post-measurement states of measuring
devices. This is the problem of outcomes.

Solutions can be categorised in terms of which proposition they
reject. Additional variables theories (e.g., Bohm (1952)) reject (A):
the wave-function is incomplete and definite measurement out-
comes are determined by additional variables. Orthodox textbook
quantum mechanics denies (B): when measurement occurs the
linear dynamics abruptly stops governing the measured system
and the system's wave-function collapses into a definite (non-
superposition) state. The probability that the wave-function col-
lapses into one of its component states is given by the absolute
value squared (mod-square) of that component's coefficient. The
inadequacy of appealing to the vague notion of measurement is
the traditional formulation of the measurement problem (Albert,
1992: chapter 4).

The theories at issue – dynamical collapse theories – deny (B).
Moreover, they solve the measurement problem by formulating
the collapse process precisely, without reference to “measure-
ment” or cognates. I will illustrate dynamical collapse theories
using the original GRW spontaneous collapse theory (Ghirardi,
Rimini & Weber, 1986) and the modern matter-density theory
(Ghirardi, Grassi, & Benatti, 1995). The latter denies (A) as well as
(B), supplementing the wave-function with a matter-density
distribution.2

But first it will be worth considering the Everett (or “many-
worlds”) interpretation,3 which denies (C): the wave-function is
complete and evolves only in accord with the linear dynamics.
Expressions (1) and (2) are interpreted as a microscopic super-
position causing a macroscopic system (d) to bifurcate into two
distinct devices that report the two possible measurement out-
comes. This does not contradict our experience because human
observer h who is initially ready to observe d's result (|ready4h)
will in accord with the linear dynamics branch too:

aj0004hj0004dj04pþ bj0104hj0104dj14p ð3Þ

The two separate terms in this superposition will (in realistic
scenarios) undergo decoherence thereby evolving independently
and will thus represent distinct macroscopic worlds within a
single quantum mechanical multiverse.

Many-worlds theory is worth mentioning here because, as we
shall see, the tails problem (when properly formulated) implies
that the formalism of dynamical collapse theories describes a
multiverse of some sort. This undermines collapse theories since
their goal is to retain and explain (C) but (C) is inconsistent with
many-worlds theory.

2. The GRW theory

The idea behind the original GRW theory is simple: elementary
particles have a tiny probability per unit time for spontaneously
collapsing into a definite position. Measuring devices are com-
posed of many entangled particles and so have an extremely high
probability per unit time for collapsing into a definite position. In
other words, although one isolated particle rarely spontaneously
collapses, one non-isolated particle will certainly collapse if a

particle it is entangled with collapses. GRW postulate that parti-
cles have a 10�16 probability per second for spontaneously
collapsing.4 Systems composed of 1023 entangled particles will
then collapse around 107 times per second. The probability that a
given wave-function will collapse onto one of its components is
given by the mod-square of that component's coefficient. This is
how GRW recover the probabilistic predictions of textbook quan-
tum mechanics. Note the two distinct roles played by probability:
there is the probability per unit time for spontaneous collapse and
there is the probability that the collapse will be centred on a given
wave-function component.

It will be useful to distinguish the idealised GRW theory from
the realistic GRW theory. Consider the following wave-function of
a particle confined to the x-axis:

a1 x14þ a2j jx24þ a3jx34þ…þanjxn4 ð4Þ
In the idealised theory this particle has a 10�16 probability

per second for spontaneously collapsing into one of the compo-
nents. The probability that the particle collapses to component
|xi4 is |ai|

2. Now consider the transition from (1) to (2). In the
idealised theory (2) is unstable and will immediately collapse into
|‘0’4d|04p with probability |a|2 or |‘1’4d|14p with probability
|b|2. This guarantees a definite measurement outcome.

Collapse in the idealised theory reduces all but one of the
coefficients to zero, while the mod-square of the chosen coeffi-
cient goes to one. But this collapse function is unphysical.5 This is
due to position/momentum incompatibility. The more confined
the position wave-function the more spread out the momentum
wave-function. The more spread out the momentum wave-
function the more equiprobable all possible states of momentum
become. The relationship between energy and momentum then
yields drastic post-collapse violations of energy conservation: ones
that we know by experiment do not occur. So GRW formulated the
collapse function as a Gaussian. The collapse then raises the mod-
square of the chosen coefficient – the collapse centre – close to
one while reducing the mod-square of all other coefficients close
to zero but never actually to zero. GRW carefully chose the
probability per unit time for spontaneous collapse and the width
of the bell curve of the Gaussian (10�5 m), so that the energy
conservation violations are consistent with known experiments.6

But in formulating the collapse function consistently with
experiments, GRW may have undermined the theory's ability to
explain definite measurement outcomes. We must now redefine
what is meant by collapse. Collapsing into a wave-function
component now means something like “shifting most of the
mod-square value to that component”. Reconsidering the transi-
tion from (1) to (2): (2) is unstable but there will be no transition
to a state represented by one of the components as in the idealised
theory. Rather, the post-collapse state is as follows:

cj0004dj04pþ dj0104dj14p ð5Þ
where c and d are the nonzero, |c|2þ |d|2¼1, and either |c|2b |d|2 or
|d|2b |c|2. The probability that |c|2b |d|2 is |a|2 while the probability
that |d|2b |c|2 is |b|2. To analyse the adequacy of this theory we
must ask whether (5) ultimately makes sense as a description of a
definite measurement outcome.

This theory is often denoted GRW0 to distinguish it from GRWM

(the matter-density formulation).7 GRWM defines a three-dimensional

2 Ghirardi et. al. (1995: section 3) motivate the matter-density addition as a
solution to the tails problem (see Section 5.1 below). Meanwhile Allori, Goldstein,
Tumulka, and Zanghi (2008: section 4.3) motivate the addition as a solution to the
problem of the high (3 N) dimensionality of the wave-function. Whether the
dimensionality problem undermines (A) is controversial (Albert (2013)).

3 Everett (1957), Saunders, Barrett, Kent, and Wallace (2010), Wallace (2012).

4 In more sophisticated variants this holds for nucleons while electrons
collapse more infrequently (Pearle and Squires, 1994).

5 Even apart from the normalisation problem for delta functions.
6 For discussion see Feldman and Tumulka (2012).
7 There is also GRWF (the flash ontology) on which matter is composed of

discrete space-time points called “flashes”. There is one flash for each collapse. The
position of the flash is the position of the collapse centre and the time of the flash is
the time of the collapse. See Bell (1987: chapter 22) and Allori et. al. (2008: section 3.2).
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