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a b s t r a c t

In Boltzmannian statistical mechanics macro-states supervene on micro-states. This leads to a
partitioning of the state space of a system into regions of macroscopically indistinguishable micro-
states. The largest of these regions is singled out as the equilibrium region of the system. What justifies
this association? We review currently available answers to this question and find them wanting both for
conceptual and for technical reasons. We propose a new conception of equilibrium and prove a
mathematical theorem which establishes in full generality – i.e. without making any assumptions about
the system's dynamics or the nature of the interactions between its components – that the equilibrium
macro-region is the largest macro-region. We then turn to the question of the approach to equilibrium,
of which there exists no satisfactory general answer so far. In our account, this question is replaced by
the question when an equilibrium state exists. We prove another – again fully general – theorem
providing necessary and sufficient conditions for the existence of an equilibrium state. This theorem
changes the way in which the question of the approach to equilibrium should be discussed: rather than
launching a search for a crucial factor (such as ergodicity or typicality), the focus should be on finding
triplets of macro-variables, dynamical conditions, and effective state spaces that satisfy the conditions of
the theorem.
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1. Introduction

The core posit of Boltzmannian statistical mechanics (BSM)
is that macro-states supervene on micro-states. This leads to a
partitioning of the state space of a system into regions of macro-
scopically indistinguishable micro-states, where by ‘macroscopi-
cally indistinguishable’ we mean indistinguishable with respect
to macroscopic properties such as thermodynamic properties.
These regions are called macro-regions. The largest of these
macro-regions is commonly singled out as the system's equili-
brium region. What justifies the association of equilibrium with
the macro-state corresponding to the largest macro-region?

After briefly introducing the main elements of BSM (Section 2)
and illustrating them with three examples, we scrutinise common
answers that have been given to this question. We find these wanting
both for conceptual and for technical reasons (Section 3). This

prompts the search for an alternative answer. This answer cannot
be found by revising any of the received approaches, and so we
propose a new definition of equilibrium. While previous approaches
sought to define equilibrium in terms of micro-mechanical proper-
ties, our definition is modelled on the thermodynamic conception of
equilibrium, and also incorporates what has become known as the
‘minus first law’ of thermodynamics (TD) (Section 4).

The new conception of equilibrium is not only free from the
conceptual and technical difficulties of earlier notions, but it also
provides the spring-board for a general answer to our initial
problem. We prove a mathematical theorem which establishes in
full generality that the equilibrium macro-region is the largest
macro-region (in a requisite sense). The proof is mathematically
rigorous and the theorem is completely general in that it makes no
assumptions either about the system's dynamics or the nature of
the interactions between the system's components (Section 5).

We then turn to the question of the approach to equilibrium, to
which there exists no satisfactory general answer. In our account,
this question is replaced by the question: under what circumstances
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does an equilibrium state exists? We point out that for an equili-
brium to exist three factors need to cooperate: the choice of macro-
variables, the dynamics of the system, and the choice of the effective
state space. We then prove a theorem providing fully general
necessary and sufficient conditions for the existence of an equili-
brium state. This theorem changes the way in which the problem
of the approach to equilibrium should be discussed: rather than
launching a search for one crucial factor (such as ergodicity or
typicality), the focus should be on finding triplets of macro-variables,
dynamical conditions, and effective state spaces that satisfy the
conditions of the theorem. This gives the discussion of equilibrium a
new direction (Section 6).

2. Boltzmannian statistical mechanics

We begin with a brief summary of the apparatus of BSM. This is
mainly to introduce notation and state a few crucial results; for
detailed introductions to BSM we refer the reader to Frigg (2008)
and Uffink (2007). We then introduce three examples that will
guide us through our discussion and serve as illustrations of the
general claims we make in later sections. The reliance on three
different examples is not owed to a preference for abundance.
Discussions of BSM have all too often been distorted, and indeed
misled, by an all too narrow focus on the dilute gas. Contrasting
the dilute gas (our first example) with the Baker's gas and the Kac-
ring (our second and third examples) widens the focus and helps
illustrate the general claims we make in later sections.

2.1. The framework of Boltzmannian statistical mechanics

A system in statistical mechanics has the mathematical struc-
ture of a measure-preserving deterministic dynamical system
ðX;ΣX ; μX ; TtÞ. X is the set representing all possible micro-states;
ΣX is a σ-algebra of subsets of X; the evolution function Tt : X-X,
tAR (continuous time) or Z (discrete time), is a measurable
function in (t, x) such that Tt1 þ t2 ðxÞ ¼ Tt2 ðTt1 ðxÞÞ for all xAX and
all t1; t2AR or Z; μX is a measure on ΣX that it is invariant under
the dynamics: μXðTtðAÞÞ ¼ μXðAÞ for all AAΣX and all t.1 The solution
through x, xAX, is the function sx : R-X or sx : Z-X, sxðtÞ ¼ TtðxÞ.

At the macro level the system is characterised by a set ofmacro-
variables fv1;…; vlg (lAN). These variables are measurable func-
tions vi : X-Vi, associating a value with each point in X. We use
capital letters Vi to denote the values of vi. A particular set of
values fV1;…;Vlg defines a macro-state MV1 ;…;Vl

. We only write ‘M’

rather than ‘MV1 ;…;Vl
’ if the specific values Vi do not matter. For

now all we need is the general definition of macro-variables. We
will discuss them in more detail in Section 6.1, where we will see
that the choice of a set of macro-variables is a subtle matter of
considerable importance and that the nature and even existence of
an equilibrium state crucially depends on it.

The central philosophical posit of BSM is supervenience: macro-
states supervene on micro-states. This implies that a system's
micro-state uniquely determines its macro-state. This determina-
tion relation will be many-to-one. For this reason every macro-
state M is associated with a macro-region consisting of all micro-
states for which the system is in M. An important yet often
neglected issue is on what space macro-regions are defined. The
obvious option would be X, but often this is not what happens. In
fact, in many cases macro-regions are defined on a subspace ZDX.
Intuitively speaking, Z is a subset whose states evolve into the
same equilibrium macro-state. In the case of a dilute gas with N

particles, for instance, X is the 6N-dimensional space of all position
and momenta, while Z is the 6N�1 dimensional energy hypersur-
face. We call X the full state space and Z the effective state space of
the system. The macro-region ZM corresponding to macro-state M
relative to Z can then be defined as the set of all xAZ for which M
supervenes on x. A set of macro-states relative to Z is complete iff
(if and only if) it contains all states of Z. The members of a
complete set of macro-regions ZM form a partition of Z (i.e. the ZM
do not overlap and jointly cover Z).

The correct choice of Z depends on the system under investiga-
tion, and has to be determined on a case-by-case basis. We return
to this point in Section 6.1. There is one general constraint on such
a choice, though, that needs to be mentioned now. Since a system
can never leave the partition of macro-regions, Z must be mapped
onto itself under Tt. Then the sigma algebra can be restricted to Z
and one considers a measure on Z which is invariant under the
dynamics and where the measure is normalized, i.e. μZðZÞ ¼ 1.2 In
this way one obtains the measure-preserving dynamical system
ðZ;ΣZ ; μZ ; TtÞ with a normalized measure μZ . ðZ;ΣZ ; μZ ; TtÞ is called
the effective system (as opposed to the full system ðX;ΣX ; μZ ; TtÞ).

The Boltzmann entropy of a macro-state M relative to Z is
SBðMÞ≔kBlog ½μZ ðZMÞ� (kB is the Boltzmann constant). The Boltz-
mann entropy of a system at time t, SB(t), is the entropy of the
macro-state the system is in at t relative to Z: SB ðtÞ≔SB ðMxðtÞÞ,
where x(t) is the system's micro-state at t and MxðtÞ is the macro-
state supervening on x(t).

One of the macro-regions is singled out as corresponding to the
equilibrium state of the system relative to Z. A crucial aspect of the
standard presentation of BSM is that equilibrium corresponds to
the largest macro-region (measured in terms of μZ). In fact, this is
often used as a criterion to define equilibrium: the equilibrium
state relative to Z is simply the one that is associated with the
largest macro-region. Since the logarithm is a monotonic function,
the equilibrium state is also the one with the largest Boltzmann
entropy.

2.2. Example 1: the dilute gas

Consider a system consisting of N particles in a finite container
isolated from the environment. The micro-state of the system is
specified by a point x¼ ðq; pÞ in the 6N-dimensional set of possible
position and momentum coordinates Γ. So Γ is the X of the gas.
The dynamics of the system is determined by its classical Hamil-
tonian H(x). Energy is preserved and therefore the motion is
confined to the 6N�1 dimensional energy hypersurface ΓE

defined by HðxÞ ¼ E, where E is the energy value. So ΓE is the Z
of the gas. The solutions of the equations of motion are given by
the flow Tt on ΓE , where Tt(x) is the state into which xAΓE evolves
after time t has elapsed. ΣE is the standard Lebesgue-σ-algebra. Γ is
endowed with the Lebesgue measure λ, which is preserved under
Tt. A measure μE on ΓE can be defined which is preserved as well
and is normalised, i.e. μEðΓEÞ ¼ 1 (cf. Frigg, 2008, p. 104).
ðΓE;ΣE; μE ; TtÞ is the effective measure-preserving dynamical sys-
tem of the gas.

The macro-states usually considered arise as follows: the state
of one particle is determined by a point in its 6-dimensional state
space γ, and the state of system of N identical particles is
determined by N points in this space. Since the system is confined
to a finite container and has constant energy E, only a finite part of
γ is accessible. One then partitions the accessible part of γ into
cells of equal size δω whose dividing lines run parallel to the
position and momentum axes. The result is a finite partition

1 At this point the measure of X is allowed to be infinite (hence there is no
requirement that the measure is normalized).

2 The dynamics is given by the evolution equations restricted to Z, and we
follow the dynamical systems literature in denoting it again by Tt.
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