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a b s t r a c t

The symmetries of a physical theory are often associated with two things: conservation laws (via e.g.
Noether's and Schur's theorems) and representational redundancies (“gauge symmetry”). But how can a
physical theory's symmetries give rise to interesting (in the sense of non-trivial) conservation laws, if
symmetries are transformations that correspond to no genuine physical difference? In this paper, I argue
for a disambiguation in the notion of symmetry. The central distinction is between what I call “analytic”
and “synthetic“ symmetries, so called because of an analogy with analytic and synthetic propositions.
“Analytic“ symmetries are the turning of idle wheels in a theory's formalism, and correspond to no
physical change; “synthetic“ symmetries cover all the rest. I argue that analytic symmetries are
distinguished because they act as fixed points or constraints in any interpretation of a theory, and as
such are akin to Poincaré's conventions or Reichenbach's ‘axioms of co-ordination’, or ‘relativized
constitutive a priori principles’.
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1. Introduction

Physical theories—if we take them literally—tell us what world is
like, or at least what it might have been like. For example, the
consensus is that special relativity, if taken as a literal description of
the world, tells us that the world is not a sequence of three-dime-
nsional instants, objectively unfolding over time, but rather a four-
dimensional continuum, in which there is no objective temporal order
between spacelike separated events. Meanwhile, there seems to be
little consensus about what quantum mechanics, taken literally, tells
us about the world. Clearly, we cannot extract an account of the
physical world from a theory unless we first understand it. But how do
we come to understand a theory—that is, how dowe interpret a theory
—if (as we suspect) it describes things that we have never before even
thought of? In other words: How are we supposed to know what a
theory is aiming at—what it represents as holding true—if the
candidates for its target can only be understood by the descriptions
given of them by that very theory?

van Fraassen (2008) has recently argued that this predicament
prevents us from giving any literal interpretation to a physical theory,
except insofar as it describes observable entities. In this paper, I will
marshal some considerations from philosophy of language and

philosophy of science to argue that a literal interpretation for a
physical theory can be found—one that describes observables and
non-observables alike—under the guidance of the right interpretative
constraints. These constraints are Leibnizian in letter, for they
recommend the elimination of distinctions without a difference, in
much the same way that Leibniz did in his critique of Newtonian
absolute space in his correspondence with Clarke (Alexander, 1998).
They appeal to symmetries of the theory being interpreted, as guides
for what to eliminate. (As I will explain, symmetries are transforma-
tions on a theory's space of states or solutions that preserve certain
quantities defined over that space.) But the constraints are not
Leibnizian in spirit, since the motivation for them is semantic rather
than metaphysical or theological—in particular, I will not appeal to
the Principle of Sufficient Reason. In fact the spirit of this paper owes
at least as much to Reichenbach (1958, 1965), and Carnap (1966) as
to Leibniz.

The paper is divided into two main parts, each focussed on what I
will call ‘a triangle of concepts’. In the first part (Section 2), I give a
general account of physical theories and their symmetries. There I
introduce my first triangle of concepts: these are a theory's states,
quantities and symmetries. I propose a dichotomy between symme-
tries into what I call analytic and synthetic, so-called because of
analogies with the familiar characterisation of propositions in those
terms. This dichotomy, applied to symmetries, is crucial for my
recommendations in part two for interpreting a physical theory.
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The second part (Section 3) contains a discussion of theory
interpretation, and makes proposals for how to interpret a theory
that is taken to be about (amongst other things) as-yet-unco-
nceived entities. There I introduce my second triangle of concepts: a
theory's formalism, its subject matter, and the representation relation
that exists between them. The second triangle is linked to the first: for
which symmetries count as analytic and which count as synthetic will
hang on the details of this representation relation, and vice versa.
Therefore a constraint on the symmetries will serve as a constraint on
the representation relation, hopefully one strong enough to determine
a unique interpretation for the theory.

Here I must immediately qualify the sense of ‘interpretation’ under
which it would be plausible to claim that a unique one might be
found. As we shall see in Section 2, my main concern is the
representation relation that may hold between possible states, or
histories, and physical quantities (i.e. properties and relations) on the
one hand, and their mathematical representatives on the other: in
particular whether it is one-to-one or one-to-many. In these terms,
the sense of interpretation I have in mind must be rather coarse-
grained: it is intensional, as opposed to hyper-intensional. As such it
will leave many metaphysical questions unanswered—specifically
ones which make no difference to the variety of possible states or
histories. For example, an interpretation will not settle whether it is
better to interpret unit electric charge as a universal or a collection of
intrinsically similar tropes, or whether gravitational attraction in
Newtonian particle mechanics is a direct relation between particles
or mediated by a gravitational field.1 However, an interpretation in
my sense will settle questions of ontology insofar as these lead to
differences in the corresponding variety of possibilities. These include
the existence or otherwise of: absolute location, orientation or velo-
city; ‘haecceities’ for spacetime points or elementary particles; and
the electromagnetic four-potential. The main purpose of the paper is
to argue that, by maximising the number of the theory's analytic
symmetries, subject to empirical adequacy, a unique interpretation—
in this coarse-grained sense of ‘interpretation’—can be found.

2. States, quantities and symmetries: the first triangle

2.1. What is a physical theory?

I should begin by saying a few words about what I take a physical
theory to be. I want to be general enough incorporate a variety of
theories, both classical and quantum. My account will not be particu-
larly novel, nor even adequate for all purposes; but it will be adequate
for the purposes of this paper. I will use some ideas and techniques
associated with the syntactic view of theories (e.g. I partly characterise
a theory by its axioms) and some associated with the semantic view
(e.g. I partly characterise a theory by its models): I see no reason to opt
for one approach over the other.2

So I propose to take a physical theory to comprise the following
four components:

1. A language L: This is intended to be the language in which the
equations of motion of the theory are expressed; but it should
also incorporate the fragment of simple English that surrounds
these equations. (E.g. ‘Let M be a differentiable manifold,’ or
‘The seventh factor Hilbert space represents the possible states
for particle seven.’) I propose to give a semantics for this
language that follows (at least in spirit) the general scheme

laid down by Montague (1970) and Lewis (1970). That is, it is
intensional and compositional.
Briefly, intensionality means that linguistic items—particularly
sentences—are assigned intensions. For many linguistic items
(specifically, the ones which may be assigned extensions—i.e.,
sentences and noun-phrases, whose extensions are truth-values
and worldly objects, respectively), the intension is a function from
indices to extensions. In Montague's theory, an index is a possible
world, construed as a Tarskian model, or an ordered sequence
comprising a possible world and appropriate context-determining
parameters, such as the time and place of utterance.3 However, for
the purposes of interpreting a physical theory, I propose that we
here stray from Montague by supplanting Tarskian models with
the possible states or histories already belonging to the mathe-
matical formalism of our given theory of interest; see below.
Compositionality is achieved by breaking down whole sentences
(e.g. ‘the electron is spin-up’) into sub-sentential components
whose intensions have a function/argument structure. So, for
example, the sentence ‘the electron is spin-up’ (whose intension
maps any possible state in which the electron is spin-up to true
and all others to false) is broken down into the noun-phrase ‘the
electron’ (whose intension maps any possible state to the electron,
if there is a unique one, in that state) and the verb-phrase ‘is spin-
up’, whose intension is a function from noun-phrase-intensions to
sentence-intensions; specifically, it maps the intension of ‘the
electron’ to the intension of ‘the electron is spin-up’.
An important collection of noun-phrases used in physical theories
are those used to refer to determinates, such as ‘2 kg in mass’,
‘distance of 3 km’, ‘spin-up’, etc. This suggests that we include
amongst our worldly objects not just things like particles or
spacetime points, but also masses, distances and vector of spin.
These dimensioned values lie in some “logical space’—à la van
Fraassen (1967) and Stalnaker (1979)—which has a mathematical
parametrisation, e.g. by the real line or the vector space of anti-
symmetric rank-2 tensors. Of course, any gloss given to these
determinates at this stage is at best provisional, since we have not
yet interpreted the theory! I return to determinates below, in the
discussion of quantities.

2. A space of mathematical states S: Almost all theories are
equipped with a space of its own “possible worlds”.4 They have
many commonalities with Tarskian models and Lewis (1986)
possible worlds, most crucial among them being that their role
is to represent possibilities regarding the actual (physical)
world: i.e., ways the world and its constituents might have
been. However, there are two crucial differences between these
states and both Tarskian models and Lewisian possible worlds.
The first crucial difference is that, while the means by which
Tarskian models and Lewisian possible worlds represent pos-
sibilities is (at least very often taken to be) well-defined and
unproblematic, the representation relation between the math-
ematical states of a physical theory's formalism and corre-
sponding concrete possibilities is far from obvious. Indeed, a
major task in the interpretation of any physical theory is
precisely settling on a unique representation relation; I return
to this below in Section 3.1. As a result, the interpretation of a
given physical theory will not be complete when a Montague
semantics is found for its language: for the intensions in any such
semantics will make ineliminable reference to mathematical states
whose physical correlates have not yet been laid down. It is only
when the further task of settling the representation relation

1 I am grateful to an anonymous referee for this example.
2 The classic account of the failings of the syntactic view is Suppe (1974). For

details of the semantic view, see e.g. French & Ladyman (1999), van Fraassen (2000)
and Frigg & Hartmann (2008). For a compelling defence of the syntactic view, see
Lutz (2010).

3 For a comprehensive discussion of the treatment of context gestured at here,
see Lewis (1980).

4 A notable exception may be quantum field theories—at least on the algebraic
approach—each of whose possible states cannot be captured by any single
separable Hilbert space.
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