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a b s t r a c t

In the early days of general relativity, several of Einstein's readers misunderstood the role of coordinates
or “mesh-system” in ways that threatened the basic predictions of the theory. This confusion largely
derived from intrinsic defects of Einstein's first systematic exposition of his theory. A few of Einstein's
followers, including Arthur Eddington, Hermann Weyl, and Max von Laue, identified the interpretive
difficulties and solved them by combining a deeply geometrical understanding of the theory with
detailed attention to the concrete conditions of measurement.
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There is no fundamental mesh-system. In particular problems,
and more particularly in restricted regions, it may be possible
to choose a mesh-system which follows more or less closely the
lines of absolute structure in the world, and so simplify the
phenomena which are related to it. But the world-structure is
not of a kind which can be traced in an exact way by mesh-
systems, and in any large region the mesh-system drawn must
be considered arbitrary. In any case the systems used in current
physics are arbitrary.1 Arthur Stanley Eddington, 1920

In the spring of 1916, Albert Einstein published a synthetic
account of the theory he had recently completed after eight years
of intense efforts. This account, entitled Die Grundlage der allge-
meinen Relativitätstheorie, is rightly regarded as a historical land-
mark since it served as the foundation of subsequent research on
general relativity. Yet some features of Einstein's exposition made
it ill-fitted for this service. Here is a short list: lack of a clear
distinction between heuristic and deductive arguments, con-
ceptual obscurities or contradictions, gaps and errors in some
deductions, and an opaque non-geometrical approach to tensor
calculus. Although these textual flaws did not necessarily reflect
misunderstandings on Einstein's part and although they did not
prevent him from obtaining essentially correct results, they

confused his least receptive readers and they challenged the most
perspicacious ones.2

Broad conceptual or philosophical aspects of this early
reception of Einstein's Grundlage have been abundantly stu-
died by historians and philosophers of physics. These aspects
include general covariance and its relation to the equivalence
principle (Howard, 1999; Norton, 1992, 1993; Stachel, 1993),
Einstein's exploitation of Mach's principle (Barbour & Pfister,
1995; Janssen, 2004), the status of measuring rods and clocks
in general relativity (Brown, 2005; Giovanelli, 2014; Ryckman,
2005), the expression of energy-momentum conservation
(Brading, 2005; Cattani & De Maria, 1993), and the nature of
the Schwarzschild singularity (Eisenstaedt, 1982). The present
article is devoted to a more practical though less studied aspect
of this reception: troubles with the meaning of coordinates—or
Eddington's “mesh-system”—in the derivations of the three
main predictions of early general relativity. This issue is not
unrelated to the broader conceptual issues, and it is also linked
to the well-studied history of the early experimental tests of
general relativity.3 This is why it has partially but penetratingly
been addressed in Jean Eisenstaedt's history of the Schwarzs-
child singularity and in John Earman and Clark Glymour's
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history of tests of the gravitational redshift.4 It nonetheless
deserves to be considered separately and fully, not only
because of the richness of the relevant historical materials
but also because it touches basic difficulties in understanding
the foundations of general relativity.

In retrospect, these difficulties have much to do with a much
simpler problem: the characterization of the intrinsic geometry of
an ordinary curved surface. This is why the first section of this
article is a concise explanation of the meaning of coordinates and
metric coefficients in the Gaussian theory of surfaces. The second
section is a point-by-point discussion of Einstein's Grundlage of
1916, with emphasis on the following conceptual difficulties:
conflation between reference frame and coordinate system, con-
fusion between extended and local frames, implicit metric mean-
ing of coordinates in some reasoning. These difficulties affected
the comprehension of the three basic new predictions given in the
three last of the fifty-five pages of Einstein's memoir. These
predictions and early commentary or developments by other
theorists are discussed separately in the three last sections of
the present essay.

The first prediction is the redshift of the spectral lines from
stars. Einstein's derivation is problematic, because it relies on the
coordinate-dependent notion that clocks slow down in an intense
gravitational field, a notion at odd with the rest of his theory.
Hermann Weyl, Arthur Eddington, and Max von Laue explained
that the gravitational redshift depended on the conservation of
frequency (when measured with respect to the time coordinate for
which the metric coefficients are time-independent) during the
propagation of light from the star to the earth. Eddington and Laue
proved this conservation. They also understood that the equiva-
lence principle justified the assumption that an atomic oscillation
corresponded to a well-defined value of the proper time ds. In
addition, Laue gave proofs that spring-clocks and Bohr-atom
clocks measured the proper time. None of these important
remarks and results could be found in Einstein's Grundlage. They
required a clarification of the meaning of the time coordinate in
the static solutions of Einstein's field equations, as well as an
empirical grounding of the proper time.

Einstein's derivation of the gravitational deflection of light was
equally problematic. It tacitly assumed a partial persistence of the
old metric interpretation of the coordinates; it was based on the
unproven validity of Huygens's principle for propagation referred
to a specific system of coordinates; and it contained an error in the
expression of the local curvature of light rays (this error, which
seems to have remained unnoticed, does not affect the final
result). Weyl and Tullio Levi-Civita proved the validity of Fermat's
equivalent principle for null geodesics, and Laue further proved
that light followed null geodesics in the eikonal approximation.
After a contribution by Ludwig Flamm, the usual route to the
gravitational deflection of light has been through the limiting case
of geodetic motion for which the velocity of the particle reaches
the velocity of light. This procedure, which Eddington justified
through the equivalence principle, avoids the difficulties of
Einstein's approach except one: it remains to be shown that usual
astronomic measurements yield the deflection expressed in the
special system of coordinates of the Schwarzschild solution. Weyl
and Eddington provided the missing argument.

Einstein's derivation of the anomaly in the advance of mer-
cury's perihelion similarly lacks any discussion of the relation
between the favored coordinates and astronomic observations.
Here as in the light-deflection case, Einstein must have intuitively

understood that the favored coordinates departed from the usual
Newtonian coordinates in such a way that the measured para-
meters retained their usual meaning. Guido Beck clarified this
point in his encyclopedia article of 1929. Several years earlier, in
1921, Paul Painlevé and Allvar Gullstrand had fallen into the error
of confusing the coordinates of any given central-symmetric
solution of Einstein's field equations with the astronomically
measured coordinates, even when the former coordinates signifi-
cantly differed from those used by Einstein and Schwarzschild.
This was perhaps the most glaring manifestation of the difficulty
that Einstein's readers (and the pre-1915 Einstein) had in assim-
ilating the basic fact that the coordinates in general relativity have
no a priori physical meaning independent of the expression of the
metric coefficients.

As was mentioned, most of the difficulties encountered in the
interpretation of the role of coordinates in general relativity have
counterparts in the theory of ordinary curved surface. It is there-
fore no wonder that the two men who most significantly con-
tributed to the clarification of Einstein's theory, Weyl and
Eddington, also were the promoters of a geometrical understand-
ing of the theory. When Einstein and his mathematician-friend
Marcel Grossmann developed the mathematical apparatus of
general relativity, they relied on the algebraic tradition of the
“absolute differential calculus” of Elwin Bruno Christoffel and
Gregorio Ricci Curbastro. This calculus was regarded as a general
theory of quadratic differential forms and associated covariant
quantities, a theory of which geometry was only one interesting
application among many others.5

Levi-Civita and Weyl were among the first mathematicians to
react to Einstein's new theory. In 1917, Levi-Civita re-injected
geometric intuition into the theory with his concept of parallel
transport. Weyl soon recast the theory in his Nahegeometrie, based
on the concept of connection between local group structures. His
Raum � Zeit �Geometrie of 1918 was both a treatise on the founda-
tions of infinitesimal geometry and a systematic exposition of
general relativity worthy of Einstein's admiration: “I am reading
the proofs of your book…with true enthusiasm. It is like a master's
symphony. Every little word relates to the whole, and the layout of
the work is grandiose.” Weyl's philosophical turn of mind helped
him clarify the basic interpretive issues of the theory. In England,
Eddington shared this quality and some of the mathematical
brilliance. In addition, his competence as an astronomer helped
him clarify the relation of the theory to concrete observation. As
his well-known, in 1919 he organized the British solar-eclipse
expeditions that were commonly believed to confirm Einstein's
prediction of the gravitational deflection of starlight when passing
close to the sun. His endeavor to explain general relativity to a
broad audience brought him to dissolve the difficulties of the
concept of metric manifold into simple geometric illustrations. His
beautifully written books on general relativity, the more philoso-
phical Space, time and gravitation of 1920 and the more technical
The mathematical theory of relativity of 1923 long were the best
English sources for learning general relativity, and they remain
highly recommended readings to this day. Other important
sources of interpretive lucidity were Max von Laue's articles and
books on relativity theory, which combined technical prowess and
philosophical profundity; the youngWolfgang Pauli's encyclopedia
article of 1921, which concisely and competently synthesized
anterior contributions to the theory; and Guido Beck's later
encyclopedia article (1929), which gave special attention to the
meaning of coordinates in observational predictions.6

4 Eisenstaedt (1982) includes an instructive account of controversies on the
meaning of coordinates in Einstein's derivation of the perihelion shift; Earman &
Glymour (1980a) contains a detailed study of confusions in the early theoretical
derivations of the gravitational redshift.

5 Cf. Reich (1994). On Grossmann's contribution, cf. Sauer (2013).
6 Levi-Civita (1917a); Weyl (1918); Einstein to Weyl, 8 Mar 1918, ECP, vol. 8;

Beck (1929); Eddington (1920, 1923); Laue (1921); Pauli (1921). Weyl's and
Eddington's extensions of Einstein's general relativity are here irrelevant. There
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