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a b s t r a c t

Baker (2011) argues that broken symmetries pose a number of puzzles for the interpretation of quantum
theories—puzzles which he claims do not arise in classical theories. I provide examples of classical cases
of symmetry breaking and show that they have precisely the same features that Baker finds puzzling in
quantum theories. To the extent that Baker is correct that the classical cases pose no puzzles, the features
of the quantum case that Baker highlights should not be puzzling either.
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1. Introduction

Baker (2011) argues that broken symmetries play a crucial role
in guiding our interpretation of quantum field theory. Baker and
others (Baker & Halvorson, 2013; Earman, 2003; Ruetsche, 2011)
approach the topic of symmetry breaking through the algebraic
formalism, in which one begins by representing physical quantities
as elements of an abstract C*-algebra, and then one looks for
concrete representations of that algebra in the bounded operators
on some Hilbert space. Whenever a symmetry is broken, there are
multiple unitarily inequivalent representations of the abstract
algebra. According to Baker, the appearance of unitarily inequi-
valent representations in quantum cases of symmetry breaking
gives rise to a number of puzzles—puzzles that don't appear in the
classical case. He believes we must solve these puzzles to arrive at
an adequate interpretation of quantum field theory.1

This paper proposes to pull the discussion back from the con-
text of quantum physics—the interpretation of which is extremely
controversial—to that of classical physics—which is at the very
least better understood. I will analyze classical cases of symmetry
breaking in order to compare their features with the quantum
cases. The basic strategy of this paper is to compare the

mathematical features of symmetry breaking in quantum and
classical theories by putting both kinds of theories on common
mathematical ground. We don't have to look far to do so: it just so
happens that one can use the very same algebraic formalism
previously mentioned to describe classical theories as well as
quantum ones.2 Given this algebraic reformulation of classical
physics one can compare in detail classical cases of symmetry
breaking with quantum cases.

In this paper, I will show that classical cases of symmetry
breaking—when translated into the algebraic formalism—give rise
to unitarily inequivalent representations. I will illustrate this with
two simple explicit examples of classical symmetry breaking: the
classical real scalar field and the classical spin chain. All parties
agree that the classical cases of symmetry breaking pose no
interpretive puzzles.3 To the extent that this is correct, it means
that the presence of unitarily inequivalent representations is not in
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1 As we will see, Baker ultimately believes that these puzzles can be solved, so

in that regard my conclusions may not differ substantially from where Baker ends
up. Still, we take very different routes to that position, and I think there is insight to
be gained from studying the examples here.

2 See, e.g., Summers & Werner (1987, p. 2441), Brunetti, Fredenhagen, & Ribeiro
(2012), and Landsman (1998).

3 For the main argument of this paper, it does not matter what reasons—
mathematical, metaphysical, or otherwise—one has for believing that classical cases
of symmetry breaking pose no interpretive puzzles. Baker (2011, p. 132) provides
arguments that the classical case is well understood, and I will provide some
remarks from a somewhat different perspective (Section 4.2) to suggest this is
correct. If one rejects Baker's reasons or my own, then one can substitute whatever
reasons he or she prefers and my argument remains intact. My central claim in this
paper is only that the very same feature of unitarily inequivalent representations
that Baker finds puzzling in quantum theories appears again in my classical
examples.
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itself puzzling. This is not to say that there is nothing interesting
about broken symmetries. Rather, my claim is that if there is
something philosophically or physically interesting to be learned
from broken symmetries, it must involve features beyond the
mere presence of unitarily inequivalent representations.

2. Preliminaries

In algebraic quantum theories4 the physical quantities of a
system are represented by the self-adjoint elements of an abstract
C*-algebra A. A state on A is given by a positive, normalized, linear
functional A:ω → . A state ω has the following initial inter-
pretation: for each self-adjoint AA ∈ , Aω ( ) corresponds to the
expectation value of A in the state ω. A state ω is pure if whenever

a a1 1 2 2ω ω ω= + for states ,1 2ω ω , it follows that 1 2ω ω ω= = .
Otherwise it is called mixed.

Importantly, this abstract algebraic formalism translates back
into the familiar Hilbert space theory once we are given a state. A
representation of a C*-algebra A is a pair ,π( ), where A:π → ( )
is a *-homomorphism into the bounded linear operators on some
Hilbert space . A representation ,π( ) of A is irreducible if the
only subspaces left invariant under the action of Aπ ( ) are 0{ } and
. Otherwise it is called reducible. One of the most fundamental

results in the theory of C⁎-algebras, known as the GNS theorem,
asserts that for each state ω on A, there exists a representation

,π( )ω ω of A, known as the GNS representation for ω, and a (cyclic)
vector Ω ∈ω ω such that for all AA ∈ ,

A A,ω Ω π Ω( ) = 〈 ( ) 〉ω ω ω

One may find representations of A on different Hilbert spaces, and
in this case one wants to know when these can be understood as
“the same representation”. This notion of “sameness” is given by
the concept of unitary equivalence:5 two representations ,1 1π( )
and ,2 2π( ) are unitarily equivalent if there is a unitary mapping
U: 1 2→ which intertwines the representations, i.e. for each

AA ∈ ,

U A A U1 2π π( ) = ( )

The specified unitary mapping U sets up a way of translating
between density operator states on 1 and density operator states
on 2, and between observables in 1( ) and observables in

2( ). The GNS representation for a state ω is unique in the sense
that any other representation ,π( ) of A containing a cyclic vector
corresponding to ω is unitarily equivalent to ,π( )ω ω .

A ground state is a state of lowest energy. While there are many
ways to determine the ground state of a quantum system in the
algebraic framework (see Bratteli & Robinson, 1996, pp. 97–98),
these all rely on the fact that the Hamiltonian of the system is the
generator in the algebraic sense of the dynamics. While the
Hamiltonian of a classical system can also be understood to gen-
erate the dynamical evolution in a geometrical sense, it is impor-
tant to note that the relation of the Hamiltonian to the dynamics is
different in classical theories and quantum theories. As such, the
definition of ground state employed in quantum theory will not
apply to our discussion of classical physics later on. Instead, we
will take a ground state to be (following standard practice in

classical physics) a minimum of the Hamiltonian, understood as a
scalar function on phase space.

A general symmetry is represented in the algebraic framework
by an automorphism α of the algebra of observables A.6 A sym-
metry acts on states by the transformation 1ω ω α↦ ○ − . A symmetry
α is broken just in case there is some ground state ω which is not
invariant under α, i.e. 1ω ω α≠ ○ − . When a symmetry α is broken
for a ground state ω in a model of quantum field theory or
quantum statistical mechanics, the GNS representations for ω and

1ω α○ − are unitarily inequivalent (Baker & Halvorson, 2013;
Earman, 2003). To see why, simply notice (Halvorson, 2006, Sec-
tion 2.2) that each Hilbert space representation can have at most
one ground state as a vector state. So if 1ω α○ − is a distinct ground
state from ω, then 1ω α○ − can only be a vector state—as it must be
in its own GNS representation—in a distinct (i.e. unitarily inequi-
valent) Hilbert space representation from the GNS representation
of ω. Baker (2011) argues that the presence of unitarily inequi-
valent representations when a symmetry is broken leads to a
number of puzzles, which we turn to now.

3. Puzzles

3.1. Wigner unitary

Baker and Halvorson (2013) argue that there is a prima facie
puzzle to understanding how the GNS representations of two
symmetry related states can be unitarily inequivalent. Let , π( )ω ω
be the GNS representation of a C⁎ algebra A for a state ω and let

, π( )ω ω′ ′ be the GNS representation of A for the symmetry
transformed state 1ω ω α′ = ○ − , where α is a symmetry of A. Let us
suppose that the symmetry α is broken by ω so that ω ω≠ ′. The
puzzle arises, they claim, because the symmetry α gives rise to a
transformation from vectors in ω to vectors in ω′ which pre-
serves all inner products. It follows from Wigner's theorem that
this transformation is given by a unitary operator W: →ω ω′

between the two Hilbert spaces, and hence the symmetry is
implemented by a unitary operator. Given the guaranteed exis-
tence of this unitary operator, how could it possibly be that the
GNS representations of A for ω and ω′ are unitarily inequivalent?

To see why Baker and Halvorson find this puzzling, one simply
has to note that the ‘Wigner unitary’ W has many nice properties
that make it act like a symmetry on the algebra of observables A.
Namely, Baker and Halvorson show in their ‘Wigner representa-
tion theorem’ that W satisfies

A AW W 1π π( ) = ( ) ( )ω ω′

which means that W can be thought of as mapping the obser-
vables in one representation onto the observables in the other, on
the whole. And furthermore, for every AA ∈ ,

W A A W 21π α π( ( )) = ( ) ( )ω ω
− ′

which means that W maps symmetry related observables in the
different representations to each other. More specifically, W maps
the representation of A1α ( )− in the GNS representation of ω to the
representation of A in the GNS representation of 1ω ω α′ = ○ − . How
can W, which seems to implement the symmetry as a unitary
operator, fail to be a unitary equivalence?

Baker and Halvorson resolve this puzzle by showing that this
‘Wigner unitary’ W is not a unitary equivalence when ω ω≠ ′. Even

4 For more on operator algebras, see Kadison & Ringrose (1997), Sakai (1971),
and Landsman (1998). For more on the algebraic formalism and axioms of algebraic
quantum theory, see Haag & Kastler (1964), Bratteli & Robinson (1987, 1996) and
Emch (1972). For philosophical introductions, see Halvorson (2006) and Ruetsche
(2011, Chap. 4).

5 See Ruetsche (2011, Chap. 2.2) and Clifton & Halvorson (2001, Sections 2.2–
2.3) for more on unitary equivalence as a notion of “sameness of representations.”

6 One might want to put further restrictions on which automorphisms count as
symmetries of the theory, perhaps by looking only at dynamical symmetries, i.e.
ones that commute with the dynamics (Baker, 2011, footnote 1). The symmetries
considered in Section 4 are all dynamical symmetries by virtue of being induced by
symmetries of a Lagrangian or Hamiltonian.

B. Feintzeig / Studies in History and Philosophy of Modern Physics 52 (2015) 267–273268



Download English Version:

https://daneshyari.com/en/article/1161423

Download Persian Version:

https://daneshyari.com/article/1161423

Daneshyari.com

https://daneshyari.com/en/article/1161423
https://daneshyari.com/article/1161423
https://daneshyari.com

