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this topic.

In this paper, I consider the role of exact symmetries in theories of physics, working throughout with the
example of gravitation set in Newtonian spacetime. First, I spend some time setting up a means of
thinking about symmetries in this context; second, I consider arguments from the seeming undetect-
ability of absolute velocities to an anti-realism about velocities; and finally, I claim that the structure of
the theory licences (and perhaps requires) us to interpret models which differ only with regards to the
absolute velocities of objects as depicting the same physical state of affairs. In defending this last claim, I
consider how ideas and resources from the philosophy of language may usefully be brought to bear on
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1. Introduction

The question of how the symmetries of a theory bear upon its
representational content has been a subject of much recent
discussion.! It is the contention of this paper that models related
by a symmetry transformation are merely different ways of
representing the same physical state of affairs (at least, with
respect to qualitative properties); and that utilising resources from
the philosophy of language provides an insightful way of defend-
ing this claim. This is both because it can provide us with new
arguments to motivate such an interpretational stance, and
because it can illuminate what structural features of such pairs of
models make this interpretational stance permissible.

The structure of the paper is as follows. In Section 2, I outline
the theory that will be our worked example throughout the paper:
namely, that of Newtonian gravity set in (full) Newtonian
spacetime,” or “Newtonian gravitation” (NG) for short. In Section
3, I outline some apparatus for approaching the symmetries of this
theory (an apparatus which should generalise to other similar
theories); and in Section 4, I discuss how models related by dif-
ferent kinds of symmetry relate to one another. With this much
setting-up done, [ turn in Section 5 to consider why models related
by boosts should be taken to represent observationally identical

E-mail address: neil.dewar@philosophy.ox.ac.uk
1 See, for example, Saunders (2003b), Dasgupta (2009), or Belot (2013).
2 That is, Newtonian rather than neo-Newtonian (aka Galilean) spacetime.
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states of affairs, and why this licences the dismissal of absolute
velocities from our ontology. In Section 6, I go on to argue—against
the received wisdom—that we can implement this dismissal
without altering our theory, i.e.,, merely by making acceptable
interpretational stipulations regarding the theory. In Section 7, |
discuss the situations in which such an interpretational strategy
would be advantageous. Finally, in Section 8, I consider whether
such an interpretational stance may in fact be not merely accep-
table, but positively required—at least if an unpleasant inde-
terminacy of reference is to be avoided. It is in Sections 6 and 8, in
particular, that we will see how ideas from the philosophy of
language (specifically, ideas regarding synonymy and translation)
may be usefully borrowed for the purposes of philosophy of
physics.

Two final remarks before we begin. I will approach NG via its
models: that is, by specifying what kinds of mathematical struc-
tures will count as kinematically possible models, and then picking
out a subset of those as dynamically possible models. The kinema-
tically possible models are, roughly speaking, objects of the right
mathematical type to represent a physically possible world; one
can think of them as representing the metaphysically possible
worlds. The dynamically possible models are then those which do,
in fact, represent physically possible worlds. In this paper, I will
assume that all dynamically possible models represent physically
possible worlds. (This is not a truism: some views impose
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metaphysical constraints which mean that some dynamically
possible models represent metaphysically impossible, and a for-
tiori physically impossible, worlds.)*

2. Newtonian gravitation

Consider the theory of Newtonian gravitation, set in (full)
Newtonian spacetime. The kinematically possible models of this
theory are of the form (A, 7, ¢, {(x;, m;)}; . 1), Where

® A is athree-dimensional (Euclidean) metric affine space (that is,
a set of points X equipped with a faithful, transitive action of
some (Euclidean) normed vector space V on X);

® 7 is a simply connected, one-dimensional manifold equipped
with a metric and orientation;

® ¢ is a scalar field on A x 7; and

® {(x;,m;)};.; is a set of ordered pairs, each consisting of a smooth
function X;: 7 —».A and a scalar m; e R (with I just being an
index set)

In such a model, A represents absolute space and 7 represents
absolute time. I will refer to the product space A x 7 as the
(Newtonian) spacetime structure, and abbreviate it as N. The ter-
minology here is a little unhappy: the structure presented is
referred to by Penrose® as Aristotelian spacetime, which—as we
shall come to later—is used in the philosophy of physics literature
to mean something else. So instead, I follow Saunders® in calling it
Newtonian spacetime. This also accords with the influential ter-
minology of Friedman® and Earman’—at least, insofar as what they
and I call “Newtonian spacetime” match in their structural
essentials. However, there are some differences in the manner of
construction, which raise some issues: these are discussed further
in Section 7.

¢ and {(x;, m;)};.; represent, respectively, the gravitational
potential and the gravitating particles (with the ith particle having
mass m; and trajectory X;); I will refer to these structures as the
dynamical structure, and abbreviate them as P. Given that both A
and 7 are equipped with metrics, it is straightforward to define
the velocity X; and acceleration X; of a particle, and the gradient
V¢ and Laplacian V2¢ of the potential. In order for a kinematically
possible model M =<(N, P) to be a dynamically possible model, the
dynamical structure P must satisfy the following equations for any
XeAdand teT:

Xi(0) = —Vo(x;,t) (1a)

Vip(X,t)=47G» mid(X—X;) (1b)

3. The symmetries of Newtonian gravitation

The symmetries of the theory sketched above are, of course,
well-known; as is the fact that they come in two important classes.
The spacetime symmetries of a given Newtonian spacetime N are
the automorphisms of N. Since N is a product space A x 7, an
automorphism f of N will map (X, t)~(f 4(X),f,(t)), where f , and
fr are automorphisms (i.e., isometries) of A and 7 respectively.

3 Such as Maudlin's metrical essentialism (Maudlin, 1988).
4 penrose (2004, chap. 17).

5 Saunders (2013).

6 Friedman (1983).

7 Earman (1989).

Such isometries consist of translations, reflections and (in the case
of A) rotations.®

In this essay, I will be concerned with only the continuous
symmetries.” Thus, the spacetime symmetries we are interested in
consist of the translations (both temporal and spatial) and spatial
rotations. The set of such symmetries for one Newtonian space-
time are referred to as the Newton group for that spacetime. The
Newton group of any Newtonian spacetime is isomorphic to that
for any other; consequently, we can think of them as faithful
representations of a single abstract Newton group.

Towards introducing the second kind of symmetry, note that if
we apply a member of the Newton group (or one of the discrete
spacetime symmetries) to the dynamical structure of a model, we
always obtain an isomorphic model. That is, given a kinematically
possible model (N, P), define the image of P = (¢, {(m;, X;)}) under a
map d : N> N as d[P]=(¢’, {(m;,x}}), where

¢ x,t)=pdy " x),d; (1) a)

Xj(6) = da(xi(d7 ' (1)) 2b)

If d is a member of the Newton group, then (N, d[P]) = (d[N], d[P]),
and so is isomorphic to (N, P). Because the conditions picking out
dynamically possible models of NG are purely structural, they
apply to any given model M if and only if they also apply to any
model M’ which is isomorphic to M.

Thus, for any kinematically possible model (N,P) and any
member d of the Newton group for N, (N, P) is dynamically pos-
sible if and only if (N, d[P]) is. Let us introduce a little terminology,
and say that two models M and M’ are co-dynamical if either both
or neither are dynamically possible. We can then say that applying
any member of the Newton group to a model yields a co-
dynamical model. However, the Newton group is not the only
set of continuous transformations with this kind of feature: the
dynamical (im)possibility of any kinematically possible model is
preserved under boosts.

A boost in N is specified by any vector v from the vector space V
underlying A and any time ty e 7; the associated boost is then
b:(x,t)e N>(x+7v,t)e N, where 7 is the oriented'® distance
between tg and t. If we add such boosts to the Newton group for N,
we obtain what is known as the Galilei group for N; as before, we
will also refer to an abstract Galilei group, of which the Galilei
group for any given spacetime is a faithful representation. Boosts
are not spacetime symmetries: a boost cannot be decomposed into
a (single) automorphism of .A and an automorphism of 7. Never-
theless, it is easy enough to check that (N, P) satisfies Eqs. (2) if and
only if (N, b[P]) does so, for any boost b. As such, a boost—like a
member of the Newton group—is a dynamical symmetry, a map-
ping whose application to (just) the dynamical structure of a
kinematically possible model yields a co-dynamical model. It fol-
lows that each member of the Galilei group for N is a dynamical
symmetry.

The Galilei group is not the full set of dynamical symmetries for
NG: in addition to the discrete symmetries, one can apply time-
dependent accelerations which are accompanied by appropriate
alterations to the gravitational potential.'" However, all the
members of the Galilei group are dynamical symmetries, even
though some of them (viz.,, the boosts) are not spacetime

8 Strictly, 7 is also invariant under rotations; but because it is one-dimensional,
the only “rotation” is the identity map.

9 See Pooley (2003) and Huggett (2003) for discussion of some of the issues
raised by spatial reflection symmetries (and by violations of those symmetries).

10 That is, if t, precedes t with respect to the orientation of 7, then 7 > 0, and if
t precedes to, then 7 <0.

" For further discussion of this symmetry, see Saunders (2003a) or Knox
(2014).
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