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Since the beginning of quantum mechanics, attempts were made to derive it from simple natural axioms
or assumptions. These reconstructions suffered from various defects, including the questionable natur-
alness or the overabundance of the axioms, the mathematical difficulty of the derivation, and the
inclusion of a wider range of theories than just quantum mechanics. Recently, in 2001, Lucien Hardy
propounded “five reasonable axioms” that seem to elude such criticism. The present paper purports to
give a simplified version of this new foundation, to discuss Hardy's original version and subsequent
variants by others authors, and to investigate the nature of the relevant axioms in light of their possible
connection with correspondence arguments.
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Thinking about foundations pays off in the long run. David
Mermin once summarized a popular attitude towards quantum
theory as “Shut up and calculate!”. We suggest an alternative
slogan: “Shut up and contemplate!” (Hardy & Spekkens,
2002, p. 4).

Quantum mechanics is most commonly taught as an operator
algebra over a Hilbert space of states, with a few interpretation
rules. In this abrupt approach, the mathematical premises lack
intuitive grounding, and the success of the theory is a wonder. One
would naturally wish to base the theory on assumptions expres-
sible in more elementary and more physical language, and ideally
to show the necessity of these axioms. The Hilbert-space structure
would then become a consequence of more natural assumptions,
and we would understand why nature requires this esoteric
mathematical structure.’

Reformulations of this kind have existed since the beginning of
quantum mechanics. The first one is the quantum logic initiated by
John von Neumann and Garrett Birkhoff in 1936, and extended in
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1 On the philosophical advantages of such reconstructions, see Grinbaum
(2007). “Quantum mechanics” is here used to refer to any theory including the
basic kinematics of the theory invented in the late 1920s (not the earlier quantum
theory), including the unitary evolution of state-representing density matrices in
Hilbert space but not necessarily including the canonical commutation rules and
the expression of the Hamiltonian.

http://dx.doi.org/10.1016/j.shpsb.2015.10.002
1355-2198/© 2015 Elsevier Ltd. All rights reserved.

the late 1950s in Geneva by Constantin Piron and Josef Jauch. In
this approach, any empirical observation is reduced to a set of Yes-
No questions on the system. These questions or propositions are
partially ordered by a relation of implication, which induces a
lattice structure of a special kind. Unlike the lattice of Boolean
logic, this lattice is not distributive; but it enjoys other properties
(modularity, orthocomplementation, and irreducibility in the case
of finite dimension) that make it isomorphic to the set of sub-
spaces of a generalized Hilbert space. This is the so-called repre-
sentation theorem. Quantum logic seduces one by the very basic
character of its premises and by its rigorous axiomatics, although it
has a few defects: The physical justification of some of the axioms
is not so evident; the representation theorem is not easy to prove;
the generalized Hilbert space structure is more general than
required by quantum mechanics, and there are difficulties in
describing subsystems of a physical system.’

Quantum logic was not the only attempt to base quantum
mechanics on natural axioms. In an influential attempt of 1957, the
Harvard mathematician George Mackey defined states and obser-
vables through probabilistic axioms about observed values. Among
other old axiomatics, the most noticeable is perhaps Giinther
Ludwig's, which starts with formal characterizations of

2 Birkhoff & von Neumann (1936), Piron (1964). Cf. Dalla, Luisa, Giuntini, &
Rédei (2007), Gabbay, Lehmann, & Engesser (2009), Wilce (2009), Darrigol (2014,
Section 8.3).
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preparation and registration procedures, and defines states
(“ensembles”) and observables (“effects”) through the statistics of
these procedures. While Mackey and Ludwig thus shifted the
foundational basis from quantum logic to the structure of a
probabilistic state space, they remained tributary of quantum logic
in their derivations of the Hilbert-space structure of quantum
mechanics. In Ludwig's case, the demands of mathematical rigor
and completeness led to overabundant formalism.’

Mackey and Ludwig thus failed to improve on the deductive,
rational economy of quantum logic. The real turning point in
natural quantum foundations was a memoir of 2001 by the British
theoretical physicist Lucien Hardy. Hardy changed the axiomatic
game by short-circuiting the representation theorems of quantum
logic and by instead deriving quantum mechanics “from five rea-
sonable axioms” about probabilistic state space. In his approach,
statistical correlation between discrete measurements is the most
basic notion, and the consideration of subspaces and composite
systems is essential. The states of a system are defined through
measurement probability distributions which may be seen as the
expression of information content. Hardy's “axioms” are not
axioms in a rigorous mathematical sense, but they are easily
translated into mathematically precise propositions from which
the Hilbert-state structure of quantum mechanics can be derived.*

The main purposes of this essay are to present a compact ver-
sion of Hardy's original argument, to discuss the nature of the
basic assumptions, and to give a short critical history of relevant
sources. Although the mathematics used by Hardy and his fol-
lowers tend to be simpler than those of quantum logic, they still
involve notions unfamiliar to most physicists. In order to alleviate
this inconvenience, this paper begins with an intuitive introduc-
tion to some of the main ideas in the context of the simplest
known quantum system: a particle with spin one-half (other
degrees of freedom being abstracted away). The second section is a
mathematically light treatment of the general case of systems for
which every measurement has a finite number of discrete out-
comes. The third and last section describes the earlier theories on
which this treatment draws. These include Hardy's original theory,
two significant improvements by Borivoje Daki¢ and Caslav
Brukner and by Lluis Masanes and Markus Miiller, and the
information-theoretic axiomatics of Giacomo Mauro D’Ariano,
Giulio Chiribella, and Paolo Perinotti.”

A few preliminary remarks on axioms, naturalness, and corre-
spondence will help grasp the substance of this article. As was
already mentioned, Hardy's axioms are not axioms in a strict
mathematical sense, ancient Greek or modern. Rather, they are
basic assumptions expressed in an informal but conceptually
precise manner. They are sharp enough to lead, in an idealized
form and with the help of a few easily accepted additional
assumptions, to well-defined mathematical statements whose
consequences can be pursued rigorously. For adepts of the rigor-
ous axiomatization of physical theories (as in Hilbert's project), it
might have been desirable to begin with a set of mathematical
axioms inspired from Hardy's assumptions and sufficient to derive
the state-space structure of quantum mechanics. This could be
done for instance by first defining the state space as a convex
domain of [0, 1]¢ (K being the number of degrees freedom), by
introducing affine probability functions on this space (for mea-
surement outcomes), and by enunciating a list of axioms for fur-
ther determining the state space and the probability functions (for

3 Mackey (1957), Ludwig (1983, 1985). Ludwig's earliest attempts date from the
mid-1950s. In its final form, his theory has no less than seventy-six axioms, most of
which are there only for mathematical reasons.

4 Hardy (2001). More recent reconstructions of quantum mechanics by other
authors will be discussed or mentioned below.

5 The contents of this paper partially overlap with Darrigol (2014, Section 8.4).

example, there should be a compact group acting transitively on
the state space). Or this could be done in an information-theoretic
framework as D’Ariano, Chiribella, and Perinotti have done with
axioms somewhat remote from Hardy's.

But the gain would hardly compensate the loss of conceptual
transparency. What is most needed for the intelligibility of quan-
tum mechanics is not one more rigorous axiomatization in a
mathematical sense (we already have von Neumann's axiomatics
based on Hilbert spaces, the quantum-logic axioms, Ludwig's
axioms, the rigged-Hilbert space axioms, the C*-algebraic axioms,
...) but a set of fundamental, intuitively justified assumptions that
are sufficiently clear and precise to form the basis of mathematical
deductions. The more problematic aspect of such a project is the
intuitive justification of the fundamental assumptions, it is not the
mathematical deduction from these assumptions. Hardy's fol-
lowers have found nothing wanting in his deductions. They have
only completed them.

Let us focus on the intuitive justification of Hardy's “axioms” or
those of his followers. Are these axioms “very reasonable” or
“reasonable” (as Hardy puts it)? Or, to put it more strongly, are
they necessary? Such judgments are in danger of being overly
subjective and they need to be assessed critically. Naturalness may
refer to empirical immediacy, to empirical veracity, to mathema-
tical simplicity, or to fittingness in a given conceptual framework.
Empirical immediacy stipulates the direct operational significance
of an axiom. Hardy achieves it by focusing on measurement results
and physical transformations. Empirical veracity further requires
the axiom to be a generalization of commonly accepted experi-
mental facts. We would of course be happy if all the axioms met
this criterion: we would thus be able to deduce quantum
mechanics from a few empirically obvious principles just as we
can, for instance, derive thermodynamics from the impossibility of
two forms of perpetual motion (with some background knowledge
of course). Mathematical simplicity is a less convincing criterion of
naturalness as long as there is no philosophical reason to pre-
suppose that nature chooses the simplest mathematical options.
Hardy reluctantly appealed to a simplicity axiom, and his followers
managed to dispense with it. Most explicitly, Hardy's naturalness
means fitness with probability theory. As a probability theory, he
tells us, quantum theory is at least as plausible as classical prob-
ability theory. His followers say something similar, just replacing
probability theory with information theory. In both cases, the fit-
ness is debatable because what is natural from the point of view of
probability or information theory need not be natural from a
physical point of view.

More broadly but more implicitly, Hardy wanted to base his
reconstruction of quantum theory on operational axioms that
would be easily acceptable by any well-educated physicist. He did
not spell out the rationale of this potential acceptance. This is what
[ have tried to do. Essentially, I argue that some of the necessary
axioms, for instance the discrete character of measurement out-
comes (for bounded systems) are operationally meaningful and
empirically well-established results, thus meeting the first two
criteria of naturalness. For the rest of the axioms, I argue that they
result from correspondence arguments.®

Famously, correspondence arguments played a crucial role in
the historical construction of quantum theory under Niels Bohr's
lead. The new atomic theory, Bohr remarked in the 1910s, admits
features of discontinuity that contradict the classical theories of
mechanics and electrodynamics. Yet experimental results are still
expressed by means of relations between quantities defined and
measured classically, such as the energy of an atomic level or the

% Hardy and his followers do not explicitly rely on correspondence arguments. [
do not know their opinion on such arguments.
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