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a b s t r a c t

The old quantum theory and Schrödinger's wave mechanics (and other forms of quantum mechanics)
give the same results for the line splittings in the first-order Stark effect in hydrogen, the leading terms
in the splitting of the spectral lines emitted by a hydrogen atom in an external electric field. We examine
the account of the effect in the old quantum theory, which was hailed as a major success of that theory,
from the point of view of wave mechanics. First, we show how the new quantum mechanics solves a
fundamental problem that one runs into in the old quantum theory with the Stark effect. It turns out
that, even without an external field, it depends on the coordinates in which the quantum conditions are
imposed which electron orbits are allowed in a hydrogen atom. The allowed energy levels and hence the
line splittings are independent of the coordinates used but the size and eccentricity of the orbits are not.
In the new quantum theory, this worrisome non-uniqueness of orbits turns into the perfectly innocuous
non-uniqueness of bases in Hilbert space. Second, we review how the so-called WKB (Wentzel–
Kramers–Brillouin) approximation method for solving the Schrödinger equation reproduces the
quantum conditions of the old quantum theory amended by some additional half-integer terms. These
extra terms remove the need for some arbitrary extra restrictions on the allowed orbits that the old
quantum theory required over and above the basic quantum conditions.

& 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

In March of 1916, Epstein (1916a, 1916b) and Schwarzschild
(1916) showed that the old quantum theory of Bohr (1913) and
Sommerfeld (1915a, 1915b, 1916) can account for an effect dis-
covered by and named after Stark (1913), the splitting of the
Balmer lines when a hydrogen atom is placed in an external
electric field.1 This result was hailed as a tremendous success for
the old quantum theory. Epstein (1916a,p. 150) boasted that “the
reported results prove the correctness of Bohr's atomic model with
such striking evidence that even our conservative colleagues

cannot deny its cogency.” In the conclusion of the first edition of
his Atombau und Spektrallinien, the bible of the old quantum
theory, Sommerfeld (1919, p. 458) called the theory's explanation
of the Stark effect one of “the most impressive achievements in
our field” and a “capstone on the edifice of atomic physics.”

However, as we noted in an earlier paper (Duncan & Janssen,
2014), the old quantum theory's explanation of the Stark effect
was not without its share of problems. These problems were
solved when, shortly after the arrival of Schrödinger's (1926a)
wave mechanics, Schrödinger (1926b) and Epstein (1926) pro-
duced an account of the Stark effect in the new theory. In this
paper, we focus on two of these problems and show how they are
resolved in wave mechanics.

First, we show how the new quantum mechanics takes care of a
fundamental problem in the old quantum theory that manifests
itself glaringly in the Stark effect. The allowed orbits of the
electron in the hydrogen atom, with or without an external field,
depend on the coordinates in which the quantum conditions are
imposed. The allowed energy levels and hence the line splittings
do not depend on the coordinates used but the size and
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eccentricity of the elliptical orbits do. In the new quantum theory,
this worrisome non-uniqueness of orbits turns into the perfectly
innocuous non-uniqueness of bases in Hilbert space.

Second, we show how wave mechanics eliminates the need for
extra restrictions on the allowed orbits over and above the basic
quantum conditions in the old quantum theory. We review
how the so-called WKB approximation method for solving the
Schrödinger equation, named after Wentzel (1926), Kramers
(1926) and Brillouin (1926), reproduces the quantum conditions
of the old quantum theory amended by some additional half-
integer terms. With these additional terms, there is no need
anymore for extra restrictions on the allowed orbits.

We will proceed as follows. In Section 2, we use the old
quantum theory to find the formula for the energy levels for the
first-order Stark effect in hydrogen, i.e., the energy of the allowed
electron orbits in a hydrogen atom in a weak electric field, to first
order in the strength of that field. We show that the old quantum
theory calls for some arbitrary restrictions on the allowed orbits
over and above the basic quantum conditions. In Section 3, we
present the problem of the non-uniqueness of orbits in the old
quantum theory. In Section 4, we sketch how the formula for the
energy levels in the Stark effect is derived in wave mechanics. We
only present the first part of this derivation in detail. This suffices
to show how wave mechanics avoids the need for extra restric-
tions on the allowed quantum states. In Section 5, we show how
the problem of the non-uniqueness of orbits in the old quantum
theory is solved in the new quantum mechanics. In Section 6, we
use the WKB method to find approximate solutions to the
Schrödinger equation to recover the quantum conditions of the
old quantum theory from wave mechanics with correction terms
of 1

2 . These correction terms remove the need for extra restrictions
on the allowed orbits in the old quantum theory. In Section 7,
we summarize our conclusions.

2. The Stark effect in the old quantum theory

In Cartesian coordinates ðx; y; zÞ, the Hamiltonian for an elec-
tron (reduced mass μ, charge �e) in a hydrogen atom in an
external electric field E in the z-direction is given by (in Gaussian
units)

H ¼ p2

2μ
�e2

r
þeEz; ð1Þ

where p2 � p2x þp2yþp2z , with ðpx; py; pzÞ the momenta conjugate to
the coordinates ðx; y; zÞ.

We switch to parabolic coordinates ðξ; η;φÞ, related to ðx; y; zÞ via
(Kramers, 1919, p. 301, Eq. (43))2

z¼ ξ�η

2
; xþ iy¼

ffiffiffiffiffi
ξη

p
eiφ: ð2Þ

This coordinate transformation is illustrated in Fig. 1. It follows
from Eq. (2) that

r2 ¼ x2þy2þz2 ¼ ξηþðξ2�2ξηþη2Þ
4

¼ ðξþηÞ2
4

; ð3Þ

or

r¼ ξþη

2
: ð4Þ

In parabolic coordinates the Hamiltonian in Eq. (1) is given by

H¼ 1
2μ

4
ξþη

ðpξξpξÞþ
4

ξþη
ðpηηpηÞþ

1
ξη
p2φ

� �
� 2e2

ξþη
þ1
2
eEðξ�ηÞ; ð5Þ

where ðpξ; pη; pφÞ are the momenta conjugate to ðξ; η;φÞ. In the old
quantum theory, as in classical mechanics, pξξpξ ¼ ξp2ξ and
pηηpη ¼ ηp2η . The reason we wrote these products the way we did
in Eq. (5) is that in wave mechanics pξ becomes a differential
operator, differential operator, ðℏ=iÞ∂=∂ξ (with ℏ� h=2π, where h is
Planck's constant) that does not commute with multiplication by ξ.

Using E to denote energy, we write

H¼ E¼ α1; ð6Þ

where α1 is some negative constant. Substituting α1 for H in Eq. (5),
multiplying both sides of by 2μðξþηÞ, and making the substitutions

pξ⟶
∂S
∂ξ
; pη⟶

∂S
∂η
; pφ⟶

∂S
∂φ

; ð7Þ

related to a canonical transformation generated by an as yet
unknown function S, known as Hamilton's principal function
(Goldstein, Poole, & Safko, 2002, p. 431), we obtain the Hamil-
ton–Jacobi equation for this system in parabolic coordinates in the
following form:3

4ξ
∂S
∂ξ

� �2

þ4η
∂S
∂η

� �2

þ 1
ξ
þ1
η

� �
∂S
∂φ

� �2

�4μe2þμeEðξ2�η2Þ ¼ 2μðξþηÞα1;

ð8Þ

where we used that

ξþη

ξη
¼ 1

ξ
þ1
η
; ðξþηÞðξ�ηÞ ¼ ξ2�η2: ð9Þ

The reason for using parabolic coordinates now becomes clear. The
Hamilton–Jacobi equation (8) is separable in these coordinates.

Fig. 1. Parabolic coordinates. This figure is taken from Epstein (1916b, p. 498) but
the labeling has been changed to reflect the definition of the coordinate transfor-
mation ðx; y; zÞ⟶ðξ; η;φÞ as given in Eq. (2), which follows Kramers (1919, p. 301,
Eq. (43)) rather than Epstein (1916b, p. 495, Eqs. (19) & (20)). The figure shows
what Epstein calls a “meridian plane” (Epstein, 1916b, p. 495, Eqs. (19) & (20)), a
plane through the z-axis and the position of the electron. This plane rotates around
the z-axis as the electron orbits the nucleus. Within this plane, the electron stays
between ξmin and ξmax and between ηmin and ηmax.

2 Epstein (1916b, p. 495, Eqs. (19) & (20)) defined parabolic coordinates slightly
differently. In the notation of Eq. (2), he set z¼ ðξ2�η2Þ=2 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
¼ ξη.

Moreover, Epstein called x what we call z and y what we call
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
. The quantity

r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
in Epstein's notation (i.e., with x¼ ðξ2�η2Þ=2 and y¼ ξη) is thus equal

to r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2þz2

p
in our notation. Instead of Eq. (4) below, Epstein found

r¼ ðξ2þη2Þ=2.
3 For a detailed explanation of the rationale behind this recipe, see, e.g.,

Goldstein et al. (2002, Chapter 10) or Corben & Stehle (1994, Chapter 11).
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