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a b s t r a c t

The role of the vacuum, in the Casimir Effect, is a matter of some dispute: the Casimir force has been
variously described as a phenomenon resulting “from the alteration, by the boundaries, of the zero-point
electromagnetic energy” (Bordag, Mohideen, & Mostepanenko, 2001), or a “van der Waals force between
the metal plates” that can be “computed without reference to zero point energies” (Jaffe, 2005). Neither
of these descriptions is grounded in a consistently quantum mechanical treatment of matter interacting
with the electromagnetic field. However, the Casimir Effect has been canonically described within the
framework of macroscopic quantum electrodynamics (Philbin, 2010). On this general account, the force
is seen to arise due to the coupling of fluctuating currents to the zero-point radiation, and it is in this
restricted sense that the phenomenon requires the existence of zero-point fields. The conflicting
descriptions of the Casimir Effect, on the other hand, appear to arise from ontologies in which an
unwarranted metaphysical priority is assigned either to the matter or the fields, and this may have a
direct bearing on the problem of the cosmological constant.
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1. Introduction

The Casimir Effect is an empirically verified quantummechanical
phenomenon involving an attractive force between two parallel
uncharged mirrors in vacuum that exists even at zero temperature
(Casimir, 1948; Lamoreaux, 1997). It also attracts the interest of
philosophers, as the common explanation for the effect appears to
make contact with certain metaphysical categories, such as the
ontology of the vacuum (Boi, 2011; Saunders, 2002; Saunders &
Brown, 1991). But explanations of the phenomenon are not uni-
formly consistent among theorists. The Casimir force has been
described, on the one hand, as an effect resulting from the
alteration, by the boundaries, of the zero-point electromagnetic
energy (Bordag et al., 2001). On this account, the force is a property
of the vacuum and “clear evidence for the existence of vacuum
fluctuations” (Carroll, 2001). On the other hand, the Casimir Effect
has also been described as a “force [that] originates in the forces
between charged particles” that can be “computed without refer-
ence to zero point energies”. According to this alternative account,
“The Casimir force is simply the (relativistic, retarded) van der

Waals force between the metal plates” and the phenomenon offers
“no evidence that the zero-point energies are real” (Jaffe, 2005).
These descriptions of the Casimir Effect appear to invoke different
ontologies in order to account for the phenomenon in question.

Clearly, if the metaphysics of the vacuum is to be informed
by the theory of the Casimir Effect, some effort must be made to
clarify its requisite ontology. However, popular accounts of the
phenomenon involve inadequate ontologies in which an unwar-
ranted metaphysical priority is exchanged between the matter and
the fields. Such interpretations are typically grounded in theories
that fail to offer a consistently quantum-mechanical description of
the interaction of light with macroscopic media. In this author's
opinion, the proper locus for interpreting the Casimir Effect is the
theory of macroscopic quantum electrodynamics, in which the
necessary quantisation of the electromagnetic field and its cou-
pling to bulk materials receives a canonical and consistently
quantum-mechanical treatment.

2. Casimir's formula

2.1. Theoretical context

In the standard account of the Casimir Effect, the predicted force
occurs between a pair of neutral, parallel conducting plates, separated
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by a distance d, in vacuum at zero temperature. The interaction arises
due to a disturbance of the vacuum state of the electromagnetic field
(in which there are no real photons between the plates) (Casimir,
1948). This is a quantum effect, as classical electrodynamics does not
predict a force at zero temperature.

The prescribed procedure may be summarised as follows
(Bordag et al., 2001): take the infinite vacuum energy of quantised
electromagnetic field, with Dirichlet boundary conditions imposed
on the field modes,

E¼ 1
2
∑ℏω; ð1Þ

and subtract from it the infinite vacuum energy in free Minkowski
space (or with the boundaries infinitely separated), E1, having
first regularised both quantities E-EðξÞ; E1-E1ðξÞ so that the
subtraction procedure is well-defined. Once the difference
between the two energies has been computed, the regularisation
is removed, ξ-0, and the result that remains is finite:

ECasimir ¼ lim
ξ-0

½EðξÞ�E1ðξÞ�: ð2Þ

This is the renormalised Casimir energy, fromwhich we can derive
the mechanical force exerted on two parallel plates. For Casimir's
case, in which the mirrors are perfectly reflective for all frequencies,
we find the pressure force

P ¼ � ℏcπ2

240d4
: ð3Þ

As an aside, we should observe that nobody follows this recipe
exactly for the electromagnetic field, though it has been pedagogi-
cally applied to a 1d scalar field where the calculation is somewhat
simpler (Bordag et al., 2001). If we attempt to follow the prescribed
procedure precisely, applying a frequency cutoff term expð�ξω=cÞ
as the regulariser, we discover an additional divergent term that is
not removed by subtracting the so-called background energy
(Horsley & Simpson, 2013); it appears to correspond to waves
running parallel to the plates. Admittedly, it does not contribute to
the force in this case, though it cannot be ignored in other cases
(Simpson, Horsley, & Leonhardt, 2013). Typically it disappears in the
course of applying the Euler–MacLaurin formula (e.g. Boi, 2011;
Leonhardt, 2010; Milonni, 1994). Suffice it to say that the simple
picture of taking the difference between two energies can be
somewhat misleading.

2.2. Physical interpretation

Nevertheless, considered on the basis of an energy mode
summation, as employed by Casimir (1948), it seems that the
quantised electromagnetic field in its ground-state, with ‘external
boundary conditions’, is sufficient to determine a force – an almost
matter-free prescription for obtaining the phenomenon in which
the boundary conditions become simply topological features of the
space (Boi, 2011). Casimir's formula, depending solely upon the
constants ℏ and c and the distance d between the plates, serves to
consolidate this impression.

But this interpretation is naive. The vacuum energy, as we have
observed, is infinite, and in addition to imposing boundary
conditions on the field we must apply some kind of regularisation
to tame the mode summation and permit the subtraction of
diverging terms. Although the various techniques employed to
do this often serve to obscure the fact, it is in the procedure of
regularisation that some of the properties of matter (in particular,
its dispersive behaviour) are permitted to leak into the calculation,
albeit rather crudely (Horsley & Simpson, 2013). Significantly, it is
not possible to extract anything meaningful (or measurable) about
the Casimir force until they are permitted to do so. Furthermore,
when we relax the highly artificial boundary condition of perfect

mirrors, as we must in order to predict the Casimir Effect in real
materials, we are forced to sum contributions to the Casimir
energy over a dispersive material response across the whole mode
spectrum, substantially modifying the predicted force.1 To do this
kind of calculation, however, we must abandon the mode summa-
tion and adopt a more sophisticated apparatus, like Lifshitz theory.
Casimir's result can still be recovered, but only as a limiting case
(Leonhardt, 2010).

3. Lifshitz theory

3.1. Theoretical context

Lifshitz theory has proven an important benchmark for the
prediction of Casimir forces in more realistic cases, enjoying signifi-
cant experimental verification (Munday, Capasso, & Parsegian, 2009;
Rodriguez, Capasso, & Johnson, 2011). In the context of Lifshitz theory,
the Casimir Effect is a result of fluctuating current densities in the two
plates (Dzyaloshinskii, Lifshitz, & Pitaevskii, 1961; Lifshitz, 1955;
Lifshitz & Pitaevskii, 2003). A force arises from the interaction of the
currents through the electromagnetic field that they generate in the
cavity. The plates are now treated more realistically as dielectric with
frequency-dependent permittivities and permeabilities, and this sub-
stantially affects both the size (and, in some cases, the nature2) of the
predicted force.

The formalism is written in terms of the electromagnetic Green
function, which describes the field produced by sources of current
within the system. A stress tensor σ is written in terms of this
Green function, from which a force can be derived. The stress
tensor, however, like the zero-point energy, contains a divergent
contribution that must also be regularised.3 Typically this is
achieved through subtracting a stress calculated using an auxiliary
Green function associated with an infinite homogeneous medium
σ0 (Leonhardt, 2010; Lifshitz & Pitaevskii, 2003; Philbin, 2011;
Philbin, Xiong, & Leonhardt, 2009; Pitaevskii, 2011), and comput-
ing the physical stress in the limit of the point of measurement
approaching a point source:

σCasimir ¼ lim
r0-r

½σðr; r0Þ�σ0ðr; r0Þ�: ð4Þ

One can then compute a finite stress tensor for the system that
depends on the dielectric functions of the material at imaginary
frequencies (quantities obtained from the dielectric properties for
real frequencies by Hilbert transformation). Only then can the
force be derived. Both Casimir's and Lifshitz' regularisations give
identical results in the limiting case of a cavity sandwiched
between perfectly reflecting mirrors (Leonhardt, 2010), which
does not exist in nature, but the stress tensor also offers measur-
able predictions for realistic systems at finite temperatures.

1 Jaffe (2005) correctly points out that Casimir's formula (3) can be recovered
‘without mentioning vacuum energies’, but confusingly claims that (3) has been
‘measured to about 1% precision’. This is not the force that Lamoreaux measured
(Lamoreaux, 1997), and claims to accuracies of this order are questionable
(Lamoreaux, 2011). The more significant object is the general stress tensor from
Lifshitz theory, and the more interesting question pertains to the circumstances of
its derivation. (The need for ‘finite conductivity corrections’ to Casimir's result,
however, are acknowledged later in Jaffe, 2005.)

2 Lifshitz theory predicts repulsive Casimir forces, under certain circumstances
(Capasso & Munday, 2011).

3 Additional divergences in the stress appear in the generalisation to inhomo-
geneous media (where the optical properties vary continuously along at least one
spatial axis). In this case, the regularisation cannot remove the infinities; it appears
that the spatially dispersive nature of the material must be taken into account
(Horsley & Simpson, 2013; Leonhardt & Simpson, 2011; Simpson, 2013; Simpson
et al., 2013).
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