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a b s t r a c t

In this paper we attempt to physically interpret the Modal Kochen–Specker (MKS) theorem. In order to
do so, we analyze the features of the possible properties of quantum systems arising from the elements
in an orthomodular lattice and distinguish the use of “possibility” in the classical and quantum
formalisms. Taking into account the modal and many worlds non-collapse interpretation of the
projection postulate, we discuss how the MKS theorem rules the constraints to actualization, and thus,
the relation between actual and possible realms.
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1. Introduction

In classical physics, every physical system may be described
exclusively by means of its actual properties, taking ‘actuality’ as
expressing the preexistent mode of being of the properties them-
selves, independently of observation—the ‘pre’ referring to its exis-
tence previous to measurement. The evolution of the system may be
described by the change of its actual properties. Mathematically, the
state is represented by a point ðp; qÞ in the corresponding phase
space Γ and, given the initial conditions, the equation of motion tells
us how this point evolves in Γ.2 Physical magnitudes are represented
by real functions over Γ. These functions commute with each other
and can be all interpreted as possessing definite values at any time,
independently of physical observation. In this scheme, speaking
about potential or possible properties usually refers to functions
defined on points in Γ to which the state of the system will arrive at
a future instant of time; these points, in turn are completely
determined by the equations of motion and the initial conditions.

In the orthodox formulation of quantum mechanics (QM), the
representation of the state of a system is given by a ray in Hilbert
space H. Contrary to the classical scheme, physical magnitudes are
represented by operators on H that, in general, do not commute.
This mathematical fact has extremely problematic interpretational
consequences for it is then difficult to affirm that these quantum
magnitudes are simultaneously preexistent. In order to restrict the
discourse to sets of commuting magnitudes, different Complete
Sets of Commuting Operators (CSCOs) have to be chosen. This
choice has not found until today a clear justification and remains
problematic. In the literature this feature is called quantum
contextuality—it will be discussed in Section 2. Another funda-
mental feature of QM is due to the linearity of the Schrödinger
equation which implies the existence of entangled states involving
the measuring device. The path from such an entangled state, i.e. a
superposition of eigenstates of the measured observable to the
eigenstate corresponding to the measured eigenvalue is given,
formally, by an axiom added to the formalism: the projection
postulate. In Section 3 we will discuss the different physical
interpretations of this postulate which is, either thought in terms
of a “collapse” of the wave function (i.e., as a real physical
interaction) or in terms of non-collapse proposals, such as the
modal and many worlds interpretations. After having introduced
and discussed these two main features of QM we will present, in
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Section 4, our formal analysis regarding possibility in orthomod-
ular structures. In Section 5, we shall discuss and analyze the
distinction between mathematical formalism and physical interpre-
tation, a distinction which can raise many pseudo-problems if not
carefully taken into account. As a consequence of this distinction we
will also put forward the difference between ‘classical possibility’ and
‘quantum possibility’. In Section 6, we are ready to advance towards a
physical interpretation of both quantum possibility and the MKS
theorem—taking into account the specific formal constraints to
modality implied by it. In Section 7 we will discuss the consequences
of the MKS theorem regarding the many worlds interpretation.
Finally, in Section 8, we provide the conclusions of our work.

2. Quantum contextuality and modality

The idea that a preexistent set of definite properties constitutes
or describes reality is one of the basic ideas which remains the
fundament of all classical physical theories and determines the
possibility to speak about an independent objective world, a world
which does not depend on our choices or consciousness. Physical
reality can be then conceived and analyzed in terms of a theory—
which describes a preexistent world—independently of actual
observation. But, as it is well known, this description of physical
reality faces several difficulties when presupposed in the inter-
pretation of the quantum formalism. In formal terms, this is
demonstrated by the Kochen–Specker (KS) theorem, which states
that if we consider three physical magnitudes represented by
operators A, B and C, with A commuting with B and C but B non-
commuting with C, the value of A depends on the choice of the
context of inquiry; i.e. whether A is considered together with B or
together with C (Kochen & Specker, 1967). From an operational
point of view, this is bypassed by considering the context (in KS
sense) as the experimental arrangement—in line with the original
idea of N. Bohr. However, if we attempt to go beyond the discourse
regarding measurement results and provide some kind of realist
representation of what is going on according to QM, we need to
make sense of the indeterminateness of properties. As Chris Isham
and Andreas Döring clearly point out:

“When dealing with a closed system, what is needed is a realist
interpretation of the theory, not one that is instrumentalist. The
exact meaning of ‘realist’ is infinitely debatable but, when used
by physicists, it typically means the following:

1. The idea of ‘a property of the system’ (i.e., ‘the value of a physical
quantity’) is meaningful, and representable in the theory.

2. Propositions about the system are handled using Boolean logic.
This requirement is compelling in so far as we humans think in
a Boolean way.

3. There is a space of ‘microstates’ such that specifying a microstate
leads to unequivocal truth values for all propositions about the
system. The existence of such a state space is a natural way of
ensuring that the first two requirements are satisfied.

The standard interpretation of classical physics satisfies these
requirements, and provides the paradigmatic example of a realist
philosophy in science. On the other hand, the existence of such an
interpretation in quantum theory is foiled by the famous Kochen–
Specker theorem.” (Döring & Isham, 2008, p. 2).

Contextuality can be directly related to the impossibility to
represent a piece of the world as constituted by a set of definite
valued properties independently of the choice of the context. This
definition makes reference only to the actual realm. But as we
know, QM makes probabilistic assertions about measurement
results. Therefore, it seems natural to assume that QM does not

only deal with actualities but also with possibilities. Then the
question arises whether the space of possibilities is subject to the
same restrictions as the space of actualities. Formally, on the one
hand, the set of actualities is structured as the orthomodular
lattice of subspaces of the Hilbert space of the states of the system
and, as Michael Dickson remarks in Dickson (2001), the KS
theorem (i.e., the absence of a family of compatible valuations
from subalgebras of the orthomodular lattice to the Boolean
algebra of two elements 2) can be understood as a consequence
of the failure of the distributive law in the lattice. On the other
hand, given an adequate definition of the possibility operator
♢—as the one developed in bib14,bib16—the set of possibilities is the
center of an enlarged structure. Since the elements of the center of
a structure are those which commute with all other elements, one
might think that the possible propositions defined in this way
escape from the constraints arising from the non-commutative
character of the algebra of operators. Thus, at first sight one might
assume that possibilities behave in a classical manner.

When predicting measuring results the context has been
already fixed. However, probability is a measure over the whole
lattice and, consequently, the set of events over which the
measure is defined is non-distributive, calling attention to the
interpretation of possibility and probability. As noticed by Schrö-
dinger in a letter to Einstein (Bub, 1997, p. 115): “It seems to me
that the concept of probability is terribly mishandled these days.
Probability surely has as its substance a statement as to whether
something is or is not the case—of an uncertain statement, to be
sure. But nevertheless it has meaning only if one is indeed
convinced that the something in question quite definitely is or is
not the case. A probabilistic assertion presupposes the full reality
of its subject.” Also von Neumann was worried about a sound
definition of probability, as mentioned in Rédei (2001).3 The
difficulties with a rigorous definition of probability made von
Neumann abandon the orthodox formalism of QM in Hilbert space
to which he himself had so much contributed and face the
classification of the factors and their dimension functions which
led to the subject of von Neumann's algebras.4

In order to explicitly verify whether modal propositions escape
from KS-type contradictions, in previous works we have developed a
mathematical scheme which allowed us to deal with both actual and
possible propositions in the same structure.5 Within this frame

3 As Rédei (2001, p. 157) states: “To see why von Neumann insisted on the
modularity of quantum logic, one has to understand that he wanted quantum logic
to be not only the propositional calculus of a quantum mechanical system but also
wanted it to serve as the event structure in the sense of probability theory. In other
words, what von Neumann aimed at was establishing the quantum analogue of the
classical situation, where a Boolean algebra can be interpreted both as the Tarski–
Lindenbaum algebra of a classical propositional logic and as the algebraic structure
representing the random events of a classical probability theory, with probability
being an additive normalized measure on the Boolean algebra.”

4 It might be argued that a complete theory of quantum probability is still
lacking. On the one hand, type II1 factor (the one whose projection lattice is a
continuous geometry, and thus an orthomodular modular lattice as required by a
definition of probability) is not an adequate structure to represent quantum events.
On the other hand, there exist different candidates for defining conditional
probability and there is not a unique criterium for choosing among them (Dalla
Chiara, Giuntini, & Greechie, 2004). Moreover, there are situations in which the
frequentist interpretation does not apply and consequently it is required to develop
new probability structures to account for quantum phenomena (Döring & Isham,
2012).

5 Van Fraassen distinguishes two different isomorphic structures for dealing
with possible and actual properties (Van Fraassen, 1991, Chapter 9). The main
aspects of van Fraassen's modal interpretation in terms of quantum logic are as
follows. The probabilities are of events, each describable as ‘an observable having a
certain value’, corresponding to value states. If w is a physical situation in which
system X exists, then X has both a dynamic state φ and a value state λ, i.e. w¼ 〈φ; λ〉.
A value state λ is a map of observable A into non-empty Borel sets s such that it
assigns {1} to 1sA. 1s is the characteristic function of the set s of values. So, if the
observable 1sA has value 1, then it is impossible that A has a value outside s. The
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