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a b s t r a c t

We provide a careful development and rigorous proof of the CPT theorem within the framework of
mainstream (Lagrangian) quantum field theory. This is in contrast to the usual rigorous proofs in purely
axiomatic frameworks, and non-rigorous proof-sketches in the mainstream approach. We construct the
CPT transformation for a general field directly, without appealing to the enumerative classification of
representations, and in a manner that is clearly related to the requirements of our proof. Our approach
applies equally in Minkowski spacetimes of any dimension at least three, and is in principle neutral
between classical and quantum field theories: the quantum CPT theorem has a natural classical analogue.
The key mathematical tool is that of complexification; this tool is central to the existing axiomatic proofs,
but plays no overt role in the usual mainstream approaches to CPT.
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1. Introduction and motivation

The CPT theorem says, roughly, that every relativistic quantum
field theory has a symmetry that simultaneously reverses charge (C),
reverses the orientation of space (or ‘parity,’ P), and reverses the
direction of time (T). In this paper we will state and prove a general
version of this theorem, proceeding from first principles and expli-
citly setting out all required assumptions.

Why re-examine a result that is so widely known? The
motivation stems from the fact that, as a general rule, the QFT
literature splits rather sharply into two sectors. The first, ‘main-
stream’ sector, typified by such standard texts such as Peskin and
Schroeder (1995), Itzykson and Zuber (1980), and Weinberg
(1995), speaks the language of working particle physicists, but is
often rather relaxed about mathematical rigour.2 The second,
‘axiomatic’ sector is fully rigorous, but bears a much looser
relationship to the QFTs that actually enjoy predictive success; it
includes the axiomatic program of Streater and Wightman, and

the purely algebraic approach (AQFT) associated with e.g. Araki,
Haag and Kastler. This contrast has been a focus of recent
discussion in the foundations community, with Fraser (2009,
2011) arguing that because of the lack of rigour in the mainstream
approach, the various axiomatic frameworks provide the more
appropriate locus for foundational work, while Wallace (2006,
2011) advocates more foundational focus on the mainstream
approach for the sake of contact with real physics.

The literature on the CPT theorem is no exception to this general
rule. In the papers that first reported the CPT result (e.g. Luders, 1957;
Pauli, 1955) and in the standard textbooks mentioned above, the
‘theorem’ is that Lagrangians (or Hamiltonians) of a certain kind are
necessarily invariant under a CPT transformation of the fields. They
establish this result via case-by-case calculations for the fields of
most physical interest (e.g. vectors or Dirac spinors in 3þ1 spacetime
dimensions), and then perhaps refer the reader to e.g. Streater and
Wightman (1964) for a more rigorous and ‘general’ proof.3 If one
follows up these references, one indeed finds a fully rigorous proof of
a result called ‘The CPT Theorem,’ but the relationship of that result
to the CPT invariance of Lagrangians is obscure; the same remark
applies to such AQFT results as that presented in Yngvason and
Borchers (2000). The literature contains a gap: there is no rigorous,
general proof available of the CPT theorem within the mainstream
approach to QFT.
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Driven by the platitude that both mathematical rigour and
contact with real physics are highly desirable, this paper aims to
fill that gap. We present a rigorous proof using only the basic
geometric and group-theoretic facts on which the CPT result
essentially depends. Our approach has the following features,
which may be of interest even to readers primarily concerned
with the axiomatic sector.

(1) We are concerned solely with the symmetries of Lagrangian
or Hamiltonian densities, dynamical equations, and similar
objects; we say only enough about quantum field theory per se
to motivate appropriate transformation laws. In fact, our results
apply formally to classical relativistic field theories just as well as
to quantum ones. We find that the quantum CPT theorem is an
instance of a more general result, other instances of which can be
seen as classical PT, classical CPT and quantum PT theorems. In
standard approaches to the CPT theorem, the relationship between
quantum and classical symmetries is left unclear.

(2) We give a geometric construction of CPT transformations
for an arbitrary field, based only on how that field transforms
under proper orthochronous Lorentz transformations. This con-
struction is clearly related to the requirements of our proof of the
CPT theorem, so it is clear why an invariance theorem results for
these particular transformations. In the existing QFT literature
(both mainstream and axiomatic), the CPT transformations tend to
be introduced ad hoc and case-by-case.

(3) We rely on a few basic geometric properties of the Lorentz
group, so that our results are valid for Minkowski space, and, indeed,
for any non-Euclidean signature, in dimension at least three. These
properties are absent in dimension two and for Galilean spacetimes
(for which we show there is no analogous result). The standard
approach relies on a detailed classification of the representations and
invariants of the four-dimensional Lorentz group, thus obscuring the
basic structure and generality of the result.

(4) Our key technique is passage from the real to the complex
Lorentz group. This ‘complexification’ is also the key idea used to
prove the CPT theorem of axiomatic QFT, but it plays no overt role
in standard approaches to the ‘mainstream’ CPT theorem. The
present paper shows how the mathematical ideas normally used
in axiomatic frameworks also apply more directly in the main-
stream approach.4

The present paper may also be of interest to those seeking a
foundational understanding of the prima facie mysterious connec-
tion between charge conjugation and spacetime symmetries that
is embodied in the CPT theorem (cf. Greaves, 2010; Wallace, 2009).

We develop our argument pedagogically, treating first the simpler
case of fields taking values in true representations of the Lorentz
group (i.e. tensor fields), and later generalising to include properly
projective representations (spinor fields). The reader interested only
in the broad outline of our results can skip Sections 5–10.

The structure of the paper is as follows. Sections 2–4 lay the
conceptual foundations. Section 2 introduces our basic notion of a
‘formal field theory,’ and explains how it can be used to study the
symmetries of classical and quantum field theories. Section 3
explains the distinction between PT and CPT transformations,
and the related idea of charge conjugation. Section 4 uses this
framework to give a detailed overview of our results.

Sections 5–9 form the technical heart of the paper. Section 5
states and proves a ‘classical PT theorem’: we show that for
classical field theories whose dynamical fields take values exclu-
sively in true representations of the Lorentz group (thus excluding
spinor fields), proper orthochronous Lorentz invariance entails ‘PT

invariance.’ Section 6 generalises the result of Section 5: we prove
a general invariance theorem that has ‘tensors-only’ versions of
the classical PT theorem, the quantum CPT theorem, and classical
CPT and quantum PT theorems as corollaries. Of these, the classical
PT and quantum CPT theorems are the most interesting, because
their premisses are widely accepted.

We next generalise to spinorial field theories. Section 7 lays out
the basic facts concerning covers of the proper Lorentz group.
Section 8 explains how the most straightforward attempt to
generalise our classical tensorial PT theorem to include spinors
fails. Section 9, building on this instructive failure, further gen-
eralises the results of Section 6 to the spinorial case; this includes
the full quantum CPT theorem.

Section 10 examines how our methods apply beyond
Minkowski space. We generalise our results to arbitrary non-
Euclidean signatures in dimension at least 3. We also point out
why our methods fail in various settings where there is provably
no analogue of the CPT theorem.

Section 11 is the conclusion, which reviews some of the main
conceptual points made along the way. Some mathematical back-
ground is presented in Appendix A, to which the reader should
refer as necessary. Appendix B relates our treatment of the cover-
ing groups of the Lorentz group to the usual approach in terms of
Clifford algebras. Detailed proofs are relegated to Appendix C.

2. Field theories and their symmetries

We will state and prove our invariance theorems in a setting of
‘formal field theories,’ in which the objects of study are formal
polynomials that can equally well be interpreted as dynamical
equations or as defining Lagrangian or Hamiltonian densities for
classical or quantum field theories. The advantage of this frame-
work (over, say, one that takes the objects of study to be spaces of
kinematically allowed fields and their automorphisms) is its
neutrality between classical and quantum field theories, and
between various interpretations of QFTs (as dynamical constraints
on operator-valued distributions, formal algorithms for the gen-
eration of transition amplitudes, or anything else).

In this section we explain in detail what a formal field theory is,
and how they can be used to describe classical and quantum field
theories. In particular, we explain how to analyse spacetime
symmetries of classical and quantum field theories in terms of an
analogous notion for formal field theories.

Initially, ‘spacetime’ M can be any vector space.5 We must
eventually suppose that M has enough structure for us to speak of
‘time-reversing’ transformations.

2.1. Classical field theories

A classical field theory is a set D�K, where the set K�
C1ðM;VÞ of kinematically allowed fields consists of all smooth
functions from spacetime to some finite-dimensional real vector
space V.6 D is the set of dynamically allowed fields. We are mainly
interested in theories D that consist of the solutions to a system of
differential equations with constant coefficients – for brevity, we

4 Complexification does play a key role in the treatment of tensors in an
illuminating paper reported by Bell (1955); the latter was the original inspiration
for the present paper. We make a further comparison to the axiomatic approach in
Section 11.8.

5 As a matter of convenience, we choose an origin for M (thus making it a
vector space instead of an affine space). When we discuss symmetries, this choice
allows us to focus on the Lorentz group rather than the full Poincaré group; it is
justified by an implicit assumption that our field theories are, in an appropriate
sense, translation invariant.

6 If the theory ‘contains two or more dynamical fields,’ as e.g. electromagnetic
theory contains the Maxwell–Faraday tensor field Fαβ and the charge-current
density vector field Jα , then V will naturally be written as a direct sum of two or
more spaces: VEM≔VF � VJ . See Example 2.1.
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