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a b s t r a c t

We analyze the role of the implicit function theorem and some of its substitutes in the work of Henri
Poincaré. Special emphasis is given upon his PhD thesis, his first work on the periodic solutions of the
three body problem, his memoir crowned by King Oscar II Prize and its development in Les méthodes
nouvelles de la mécanique céleste, and finally his contributions on the figures of equilibrium of rotating
fluid masses.
Résumé: Nous analysons le rôle du théorème des fonctions implicites et de certains substituts dans
l'oeuvre de Henri Poincaré. L'accent est mis en particulier sur sa thèse de doctorat, son premier travail sur
les solutions périodiques du problème des trois corps, son mémoire couronné par le Prix du Roi Oscar II
et son développement dans Les méthodes nouvelles de la mécanique céleste, et finalement ses contribu-
tions aux figures d’équilibre d'une masse fluide en rotation.
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1. Introduction

The implicit function theorem is one of the most important
and versatile tools of mathematics, not only in analysis, but in
geometry as well. Although used since the beginning of calculus,
its formalization and rigorous proof had to wait for Cauchy (1831)
in the analytic case, and to Dini (1878) in the smooth case.
Historical information can be found in Krantz-Parks (2002) and
Mingari Scarpello-Ritelli (2002).

This theorem and some of its generalizations have played an
important role in the work of Henri Poincaré, from his Thesis in
1879 till his work in celestial mechanics. Poincaré independently
reinvented what is now called the Weierstrass preparation theo-
rem in order to extend the Cauchy–Kovalewski theorem to some
singular cases. In his first work on the periodic solutions of the
three body problem, he substituted to the implicit function
theorem a topological result which will be later proved to be
equivalent to Brouwer fixed point theorem. In his first memoir
on the figures of equilibrium of rotating fluid bodies, Poincaré
defined the concept of bifurcation points in a series of equilibria.
They are essentially the points where the implicit function
theorem does not work, and Poincaré introduced topological and
analytic tools to prove their existence. Later, and especially in the

monographs he devoted to the mentioned problems, the implicit
function theorem and some of its consequences became the
fundamental tools.

The aim of this paper is to analyze those contributions, and to
show that when Poincaré did not take the simplest way, which is
often the case for pioneers, his detours were more than worth-
while and the sophisticated tools he invented to solve local
problems became, in the hands of other mathematicians, funda-
mental for the study of the corresponding global problems.

The scientific work of Poincaré has been recently analyzed in a
nice and detailed way in the remarkable books of Gray (2012)
and of Verhulst (2012). For Poincaré's work on the three body
problem, the reference remains Barrow-Green's (1997) mono-
graph. Those books can be usefully consulted for a more systema-
tic and complete description of the memoirs and monographs
considered here.

In this paper, a “thematic” or “transversal” viewpoint is
emphasized more than a systematic one. We believe that such a
viewpoint may be useful in understanding and analyzing Poin-
caré's mathematics, because of his exceptional talent in using a
definite tool in very different areas of mathematics. Such a view-
point has already been developed in Mawhin (2000), where,
instead of implicit function techniques, Kronecker's index had
been emphasized. Other mathematical tools could be considered
as well, like non-Euclidean geometry, group theory, calculus of
variations or anticipations of exterior calculus for example.
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2. Implicit function and preparation theorems

For the reader's convenience, we recall in this section the
statements of the main theorems which will be often mentioned
in the sequel.

The first version of the implicit function theorem was stated
and proved for analytic mappings by Cauchy (1831), and summar-
ized in Cauchy (1841). If Cm is the cartesian product of m copies of
the complex plane C, and BðrÞ �Cm denotes the open ball of center
0 and radius r40, the mapping

F : Bðr0Þ � BðR0Þ �Cn � Cp-Cp

is called analytic if it is equal on Bðr0Þ � BðR0Þ to the sum of its
Taylor series.

Theorem 1. If F : Bðr0Þ � BðR0Þ �Cn � Cp-Cp is analytic and such
that

Fð0;0Þ ¼ 0; JacyFð0;0Þa0;

then there exist r1A ð0; r0Þ, R1Að0;R0Þ, and f : Bðr1Þ-BðR1Þ analytic
such that, in Bðr1Þ � BðR1Þ
Fðx; yÞ ¼ 03y¼ f ðxÞ:

Recall that the Jacobian or functional determinant JacyFð0;0Þ of F
with respect to y at ð0;0Þ is the determinant of the complex ðp�
pÞ�matrix whose elements are the (complex) partial derivatives
F 0i;yj ð0;0Þ ð1r i; jrpÞ.

Let Rm denote the Euclidean space of dimension m and
BðrÞ �Rm the open ball of center 0 and radius r40. The classical
implicit function theorem for mappings of class C1 can be stated as
follows.

Theorem 2. If F : Bðr0Þ � BðR0Þ �Rn � Rp-Rp is of class C1 and
such that

Fð0;0Þ ¼ 0; JacyFð0;0Þa0;

then there exist r1Að0; r0Þ, R1Að0;R0Þ, and f : Bðr1Þ-BðR1Þ of class
C1 such that, in Bðr1Þ � BðR1Þ,
Fðx; yÞ ¼ 03y¼ f ðxÞ;

here the Jacobian JacyFð0;0Þ is the determinant of the real ðp�
pÞ�matrix whose elements are the partial derivatives F 0i;yj ð0;0Þð1r i; jrpÞ. Of course, in Theorems 1 and 2, the centers 0 of
the involved balls, chosen for simplicity, can be replaced by any
arbitrary point of the corresponding space. Those theorems
essentially give conditions under which a graph in the (x,y) space
defined by a system of equations Fðx; yÞ ¼ 0 can be seen, in the
neighborhood of one of its points ðx0; y0Þ as the graph of a function
y¼ f ðxÞ.

Although implicit functions were used much earlier, the com-
plete statement and proof of Theorem 2 were only given by Dini
(1878) in his mimeographed lectures of analysis of 1877–1878, and
reproduced in the monographs of Angello Genocchi (written by
Genocchi-Peano, 1884) and Jordan (1893).

In the special situation of Theorem 1 with p¼1, the following
result gives information in cases where the Jacobian vanishes.
F ðkÞy denotes the kth (complex) partial derivative with respect to y.

Theorem 3. If F : Bðr0Þ � BðR0Þ �Cn � C-C is analytic and such
that

Fð0;0Þ ¼ F 0yð0;0Þ ¼⋯¼ F ðm�1Þ
y ð0;0Þ ¼ 0; F ðmÞ

y ð0;0Þa0; ð1Þ

then there exist r1A ð0; r0Þ, R1Að0;R0Þ, a0; a1;…; am�1 : Bðr1Þ-C

analytic, vanishing at 0, and G : Bðr1Þ � BðR1Þ-BðR1Þ analytic such

that Gðx; yÞa0 on Bðr1Þ � BðR1Þ and

Fðx; yÞ ¼ ½a0ðxÞþ⋯þam�1ðxÞym�1þym�Gðx; yÞ on Bðr1Þ � BðR1Þ:

In other words, the zeros of Fðx; �Þ in a neighborhood of ð0;0Þ are
the solutions of the algebraic equation

a0ðxÞþ⋯þam�1ðxÞym�1þym ¼ 0:

This result is usually called Weierstrass preparation theorem.
For m¼1, it implies of course Theorem 1 with p¼1. As observed by
Lindelöf (1905), Cauchy stated and proved it already in 1831
(Cauchy, 1831), and published it in 1841 (Cauchy, 1841). Carl
Weierstrass stated and proved it in his Berlin's lectures around
1860, and published it in 1886 (Weierstrass, 1886). Poincaré, as we
shall see, stated, proved and published it in 1879.

3. 1879: Sur les propriétés des fonctions définies par les
équations aux différences partielles

Poincaré's (1879) thesis, entitled Sur les propriétés des fonctions
définies par les équations aux différences partielles, and defended in
1879, starts with some “preliminary lemmas”. The first one, called
by Poincaré “Théorème de Briot-Bouquet” is nothing but Theorem
1. The unusual name given by Poincaré comes from the fact that
the reference he gave for this theorem is the famous treatise on
elliptic functions of Briot–Bouquet (1875). This may have pleased
Bouquet, a member of the jury. Poincaré added that

this theorem can be seen as a consequence of the theorem of
existence of the integral of a differential equation.1

Then Poincaré introduced the concept of an algebroïd function y
from C to C, namely a function y which, in a neighborhood of
0AC, is solution of an equation of the form

ymþAm�1ðxÞym�1þ⋯þA1ðxÞyþA0ðxÞ ¼ 0;

where mZ1 is an integer and the Aj vanish at 0 and are analytic
near 0.

If now Fðx; yÞ≔∑1
k ¼ 0AkðxÞyk, where the analytic functions Aj of

x≔ðx1;…; xnÞACn are such that

A0ð0Þ ¼⋯¼ Am�1ð0Þ ¼ 0; Amð0Þa0

(which means that F is analytic in the neighborhood of ð0;0Þ and
condition (1) holds), Poincaré stated and proved the following two
results as Lemmas 2 and 3.

Lemma 1. There exist m functions y(x) such that, near 0,

Fðx; yðxÞÞ ¼ 0 and lim
x-0

yðxÞ ¼ 0:

Lemma 2. The m functions y(x) are algebroïd of degree m.

So, a third independent author must be added to Cauchy and
Weierstrass for essentially proving the preparation theorem.

In the thesis, those results are applied to the obtention of some
extensions of Briot-Bouquet theorems for singular ordinary differ-
ential equations to Cauchy–Kowalevski's problem for analytic
partial differential equations.

1 ce théorème peut être regardé comme une conséquence du théorème relatif
à l'existence de l'intégrale d'une équation différentielle.

J. Mawhin / Studies in History and Philosophy of Modern Physics 47 (2014) 124–130 125



Download English Version:

https://daneshyari.com/en/article/1161540

Download Persian Version:

https://daneshyari.com/article/1161540

Daneshyari.com

https://daneshyari.com/en/article/1161540
https://daneshyari.com/article/1161540
https://daneshyari.com

