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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� An active wavelength-selection algo-
rithm is proposed for mixture
identification.

� The algorithm runs in real-time,
interleaving wavelength selection
with sensing.

� Wavelength selection is analyte-
specific and based on previous
measurements.

� Active wavelength selection operates
in two stages: exploration and
exploitation.

� The approach is compared against a
passive strategy based on successive
projection.
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a b s t r a c t

This article presents a wavelength selection framework for mixture identification problems. In contrast
with multivariate calibration, where the mixture constituents are known and the goal is to estimate their
concentration, in mixture identification the goal is to determine which of a large number of chemicals is
present. Due to the combinatorial nature of this problem, traditional wavelength selection algorithms are
unsuitable because the optimal set of wavelengths is mixture dependent. To address this issue, our
framework interleaves wavelength selection with the sensing process, such that each subsequent
wavelength is determined on-the-fly based on previous measurements. To avoid early convergence, our
approach starts with an exploratory criterion that samples the spectrum broadly, then switches to an
exploitative criterion that selects increasingly more relevant wavelengths as the solution approaches the
true constituents of the mixture. We compare this “active” wavelength selection algorithm against a
state-of-the-art passive algorithm (successive projection algorithm), both experimentally using a tunable
spectrometer and in simulation using a large spectral library of chemicals. Our results show that our
active method can converge to the true solution more frequently and with fewer measurements than the
passive algorithm. The active method also leads to more compact solutions with fewer false positives.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Infrared (IR) spectroscopy is a powerful tool for qualitative and
quantitative analysis of chemical mixtures. Mixture analysis typi-
cally requires using multivariate techniques since the IR spectra of
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individual chemicals can overlap significantly. However, not all
wavelengths in the IR spectrum are useful. As an example, in the
context of multivariate calibration, it has been shown eboth
theoretically [1] and experimentally [2]e that accuracy improves if
a subset of the wavelengths is selected before conducting multi-
variate analysis. Accordingly, a number of wavelength selection
algorithms have been proposed in the chemometrics literature,
including exhaustive search (e.g., branch-and-bound [3]); ran-
domized search (e.g., genetic algorithms [4], simulated annealing
[5], ant colony optimization [6]); and greedy search (e.g., successive
projection algorithms [7], uninformative variable elimination [8]).
These algorithms work well for multicomponent calibration, when
the target constituents are known and only their concentrations
need to be estimated. In such cases, the linear system is known, so a
globally optimal subset (containing a few wavelengths) exists. A
more challenging problem is selecting wavelengths when the
mixture constituents are unknown. This is the case for mixture
identification problems, where the goal is to determine the con-
stituents of a mixture from among a large number of chemicals.
While mixture identification problems use the same linear model
of multicomponent calibration, and therefore can also benefit from
wavelength selection, the linear model becomes ill-defined
because the spectral signature of the mixture can vary signifi-
cantly (i.e., for a library with N constituents there are 2N possible
mixtures). Thus, different wavelength selection strategies are
needed depending on how much is known (or can be assumed)
about the constituents of the mixture.

To address this issue, we propose an active sensing strategy that
interleaves wavelength selection with the sensing process, so that
the next wavelength to be sampled is a function of previous mea-
surements. This approach is fundamentally different from those
outlined above because it does not generate a fixed “universal”
subset of wavelengths but a unique sequence of wavelengths for
each analyte. In other words, our approach assumes that the opti-
mum subset of wavelengths is analyte dependent. Starting with an
exploratory criterion that samples the spectrum broadly, our active
sensing algorithm selects increasingly more relevant (i.e., exploit-
ative) wavelengths as the sensing process continues and its esti-
mates approach the true constituents of the mixture.

Our work builds on a previous algorithm for active wavelength
selection [9] based on multi-modal solvers. In that early work, a
multi-modal solver was used to generate multiple candidate
spectra that fit the measurements well, and the wavelength with
maximum variance across the candidate spectra was chosen as the
next measurement. However, themulti-modal solver does not scale
up to higher-order mixtures since its computational complexity
grows with the number of chemicals in the spectral library. To
overcome these computational issues, the work present here
guides the wavelength selection process with two methods whose
complexity grows with the number of wavelengths in the spec-
trum: Gaussian process regression (GPR) and linear discriminant
analysis (LDA). Namely, we use GPR to reconstruct the spectrum of
the unknownmixtureeonewavelength at a time, and LDA to select
wavelengths that allow us to eliminate irrelevant mixture compo-
nents from the solution.

2. Methods

The problem of mixture identification can be formulated as:

Ax ¼ b s:t:x � 0 (1)

where column matrix A is a reference library containing the spec-
trum for each possible chemical constituent, column vector b

denotes the measured spectrum of a mixture, and x represents the
concentration (non-negative) of the mixture. As illustrated in
Fig. 1(a), the goal of mixture identification is to select the correct
columns in matrix A, i.e., determine the non-zero elements in the
solution vector x. By contrast, the goal of wavelength selection is to
find a small number of rows in matrix A that offer good accuracy
eFigure 1(b). Wavelength-selection algorithms assume that the
identity of the chemicals is known (i.e., the correct columns in
matrix A have been preselected), in which case supervised learning
can be used to find a subset of wavelengths that maximize the
effective rank for the known components. However, if the identity
of the components is unknown, the problem becomes ill-defined
because then not only the rows but also the columns in matrix A
must be selected. This is a paradoxical problem because selecting
optimal wavelengths requires knowledge of the mixture compo-
nents, and identifying those components requires a set of wave-
lengths to be measured. We address this problem by using an
iterative process that alternates between selecting rows (wave-
lengths) and columns (chemicals), as illustrated in Fig. 1(c). This
requires an active sensing strategy that performs wavelength se-
lection on-the-fly, interleaved with the sensing process.

Fig. 2 shows the building blocks of our algorithm for active
wavelength selection. At a high level, the algorithm consists of two
loops: an inner-loop that performs wavelength selection, and an
outer-loop that performs mixture identification. The inner-loop
(wavelength selection) operates in two distinctive stages: an
initial exploratory stage that aims to reconstruct the entire spec-
trum, and a later exploitative stage that targets at distinctive re-
gions in the spectrum. The outer-loop (mixture identification) uses
a sparse solver to estimate the concentration of the analytes in the
mixture. The estimated concentration is then used to identify the
analyte and refine the wavelength selection process as it moves
from exploration to exploitation. The outer loop is the more
computationally intensive of the two, so it is executed once every
n-th wavelength measurements. Parameter n provides a balance
between computational costs and adaptiveness. We observed
empirically that varying n from 1 to 20 had minimal impact on
convergence, so we chose the median n¼10 for the work reported
here.

2.1. Explorative stage

The explorative stage of wavelength selection is guided by
Gaussian Process Regression (GPR). Also known as kriging in geo-
statistics, GPR is an interpolation method that can be used to
approximate a smooth arbitrary function using a set of sparse
samplings. Fig. 3 illustrates GPR on a toy one-dimensional function.
In this example, the goal is to reconstruct the function using a small
number of samples. Because of the inherent smoothness of the
function, GPR only requires 10 samples to recover it accurately. Also
illustrated in Fig. 3 (shaded areas), GPR provides an estimate of the
variance of the reconstruction, which indicates how uncertain the
estimation is across all wavelengths. As we will see, this variance
serves as the utility function for explorative wavelength selection.

Consider the case where we have selected m wavelengths
lm ¼ {l1,l2,…,lm} and obtained the corresponding observations
blm ¼ fbl1 ; bl2 ; …; blmg. The goal of GPR is to reconstruct the full
spectrum bGP ¼ fbl1 ; bl2 ;…; blMg with M [ m, and estimate its

variance S2GP ¼ fS2l1 ; S
2
l2
;…; S2

lM
g. Gaussian processes model an

arbitrary function as a random vector that follows a multivariate
normal distributionbGP � mþ N ð0;R0Þwhere m is a scalar, and R0 is
a covariance matrix cov(lM,lM). The output of GPR is a multivariate
distribution N ðbGP ;SGPÞ where SGP is a full covariance matrix
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