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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� A novel regression model integrating
advantages of EMD, unfolded strat-
egy and PLSR is proposed for the
quantitative analysis of fuel oils.

� EMD and unfolded strategy are
introduced for generation and inte-
gration of the member models,
respectively..

� PLSR model is built between the
extended dataset and the target
values.
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a b s t r a c t

Accurate prediction of the model is fundamental to the successful analysis of complex samples. To utilize
abundant information embedded over frequency and time domains, a novel regression model is pre-
sented for quantitative analysis of hydrocarbon contents in the fuel oil samples. The proposed method
named as high and low frequency unfolded PLSR (HLUPLSR), which integrates empirical mode decom-
position (EMD) and unfolded strategy with partial least squares regression (PLSR). In the proposed
method, the original signals are firstly decomposed into a finite number of intrinsic mode functions
(IMFs) and a residue by EMD. Secondly, the former high frequency IMFs are summed as a high frequency
matrix and the latter IMFs and residue are summed as a low frequency matrix. Finally, the two matrices
are unfolded to an extended matrix in variable dimension, and then the PLSR model is built between the
extended matrix and the target values. Coupled with Ultraviolet (UV) spectroscopy, HLUPLSR has been
applied to determine hydrocarbon contents of light gas oil and diesel fuels samples. Comparing with
single PLSR and other signal processing techniques, the proposed method shows superiority in predic-
tion ability and better model interpretation. Therefore, HLUPLSR method provides a promising tool for
quantitative analysis of complex samples.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The hydrocarbon contents of fuel oil (gas oil and diesel) is a key
indicator for fuel oil quality, which directly influences its combus-
tion efficiency, engine life and automotive emissions [1,2]. The
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internationally traditional methods for analysis of fuel oil contents
are the American Society for Testing and Materials (ASTM)
methods, such as Chromatographic [3,4] and Nuclear magnetic
resonance (NMR) [5] methods. Most of these methods are time-
consuming, expensive and challenging in practice since many
steps or professional operation skills are usually involved [6,7].
Therefore, rapid and simple analytical techniques to quantify the
components of fuel oil are gaining increasing attention. Molecular
spectroscopic analysis technology [6e12], especially ultraviolet
(UV) spectroscopy [10e12], has shown its superiority in analysis of
petroleum products, since it is cheap, fast, nondestructive and no
environmental pollution. However, the high overlapped spectral
bands and the existence of the noise and background of spectra
make quantitative analysis with univariate calibration inapplicable.
Hence, multivariate calibration methods become hot points in
quantitative analysis of spectra in recent years.

Many multivariate calibration methods, such as partial least
squares regression (PLSR) [13e15], artificial neural network (ANN)
[16], support vector regression (LS-SVR) [1,17] etc., have been
applied to analyze multi-components spectroscopic data. However,
the predictive performance of these traditional calibration tech-
niques is usually unsatisfactory because only a single model is built
between the spectra and targets to predict the unknown samples,
which leads to the emergence of the so-called “ensemble
modeling” [18e20]. The ensemble technique can achieve better
accuracy than single models and gain increasing attentions in
multivariate calibration. The basic idea of ensemble modeling is
combining the results of multiple individual models (or member
models) to produce the final prediction. Therefore, the ensemble
modeling can be broken into three questions: generation, modeling
and integration of the member models [21]. In the model algorithm
aspect, all the single modeling technique can be used, such as PCR,
PLSR, SVR, ANN, etc. Due to its simple, rapid and good predictive
performance, PLSR is used in this research. Thus, generating and
integrating the member models are the keys to the success of
ensemble modeling.

The existing member model generation techniques mainly
include sample direction and variable direction resampling
methods such as bagging [18,22], boosting [5,8,19,23e25], sub-
space [21] and stacked [26e28], etc. These methods can improve
the predictive accuracy, stability and robustness by resampling a
number of samples or variables from the whole training set many
times. However, most spectra collected from spectroscopic in-
struments are inherently local in nature and with different locali-
zations in both time (wavelength) and frequency [29]. Both sample
direction and variable direction resampling techniques are all
generated sub-models from original data of time (wavelength)
domain, which cannot utilize the information in both time and
frequency of the signal at the same time. Wavelet transform (WT)
has shown its effectiveness for multivariate calibration due to the
ability of time-frequency resolution [30]. Recently, WT is intro-
duced for generating member models by converting the original
data into the wavelet space [31,32]. Nevertheless, WT cannot pro-
cess molecular spectroscopy perfectly in which nonlinear phe-
nomenon inevitably exits and need choose appropriate settings
(wavelet family, scale and number of decomposition levels) for a
specified application [32]. Therefore, it is necessary to develop new
sub-models generation method which not only has good localiza-
tion properties both in time and frequency domains but also can
make up the deficiency of WT.

Empirical mode decomposition (EMD), proposed by Huang et al.
[33], is a self-adaptive signal processing technique that can be
applied to process non-linear and non-stationary signal perfectly.
By EMD, the complicated signal can be decomposed into a finite
number of almost orthogonal intrinsic mode functions (IMFs)

components and a residue component according to the inherent
characteristics of the signal. Because of its efficiency, the EMD
method has been successfully applied in several fields such as price
forecasting, biomedical engineering, earthquake engineering,
tourist arrivals, electrical power system and mechanical fault
diagnosis [34e36]. Up to now, few research has been reported on
ensemble modeling by EMD in spectra analysis. Thus, EMD was
introduced to generate member models for fully using the infor-
mation embedded over frequency and time domains.

Integration of the member models is another key for ensemble
modeling, which is generally implemented by combination of the
results obtained by all themembermodels [37]. Simple average and
weighted average are two commonly used integration strategies.
The former does not need any parameters, but the results of which
are not as good as the latter while the latter need to determine the
weights for the member models. Although several criteria have
been used such as prediction error [24], prediction residual error
sum of squares (PRESS) [30], nonnegative least square [26] etc., it is
difficult to determine the criterion which can give the optimal
predictive result. Hence, the determination of weights is still a
problem for a given application. Recently, Shao et al. [37] proposed
wavelet unfolded partial least squares (WUPLS) for quantitative
analysis of complex samples. In this method, different wavelets
were used to process the measured spectra, and then all the pro-
cessed data were extended in the variable direction instead of
building multi-models. This unfolded strategy can circumvent the
determination of model weights.

In this paper, a novel regression model that integrates EMD and
unfolded strategy with PLSR, referred to the high and low fre-
quency unfolded PLSR (HLFUPLSR), is proposed for quantitative
analysis of the fuel oil samples. In order to demonstrate the
enhancement of predictive accuracy by the proposed approach,
PLSR with original spectra and preprocessed [38] spectra by the
first order derivative (1st derivative), continuous wavelet transform
(CWT) are used for comparisons. Moreover, light gas oil and diesel
fuels samples were used to evaluate the performance of the
method.

2. Theory and algorithm

2.1. Empirical mode decomposition (EMD)

The most appealing nature of EMD is its adaptive data-driven
decomposition mechanism which does not require a priori-
defined basis such as Fourier and Wavelet transform [36]. By us-
ing EMD, any complicated signal can be decomposed into a finite
number of IMFs and a residue according to its inherent character-
istics. Thus, owing to the self-adaptability of EMD, the IMFs number
is determined by the signal itself. Fig. 1 shows the extracting pro-
cess of IMF for a simulated signal by EMD. To obtain the IMFs, it can
be operated by the following steps. Firstly, all the local maxima and
minima are identified for the given signal x (black line) and then
the upper (red line) and lower envelopes (green line) are formed by
connect themwith a cubic spline line, respectively. The mean value
curve (blue line) of the two envelopes is calculated by averaging the
two envelopes. The difference component c is gotten by subtraction
the mean value from the original signal x. An IMF IMFi will be ob-
tained if c satisfies the two constraints of IMF (a) the number of
extrema in the whole data must either equal with the zero-
crossings or differ at most by one; (b) the mean value of the two
envelopes defined by the maxima and the minima are symmetric
with respect to zero mean [34]. Then x is replaced with the residual
r¼ x�c. If c is not an IMF, x is replaced with c. This process is called
a sifting process and it is repeated until the residual satisfies the
stopping criterion. At the end of this process, the signal can be
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