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� A nonlinear kernel fusion algorithm
is proposed to perform drug-target
interaction predictions.

� Performance can further be improved
by using the recalculated kernel.

� Top predictions can be validated by
experimental data.
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a b s t r a c t

Identification of drug-target interactions (DTI) is a central task in drug discovery processes. In this work,
a simple but effective regularized least squares integrating with nonlinear kernel fusion (RLS-KF) algo-
rithm is proposed to perform DTI predictions. Using benchmark DTI datasets, our proposed algorithm
achieves the state-of-the-art results with area under precisionerecall curve (AUPR) of 0.915, 0.925, 0.853
and 0.909 for enzymes, ion channels (IC), G protein-coupled receptors (GPCR) and nuclear receptors (NR)
based on 10 fold cross-validation. The performance can further be improved by using a recalculated
kernel matrix, especially for the small set of nuclear receptors with AUPR of 0.945. Importantly, most of
the top ranked interaction predictions can be validated by experimental data reported in the literature,
bioassay results in the PubChem BioAssay database, as well as other previous studies. Our analysis
suggests that the proposed RLS-KF is helpful for studying DTI, drug repositioning as well as poly-
pharmacology, and may help to accelerate drug discovery by identifying novel drug targets.

Published by Elsevier B.V.

1. Introduction

Identifying interactions between chemical compounds and
target proteins plays a fundamental role in drug discovery pro-
cesses. Pharmaceutical companies, on the one hand, would like, as

soon as possible, to detect hidden adverse events (such as adverse
drug reactions), which has been a major global health concern,
causing side effects, hospitalizations, even deaths [1]. On the other
hand, they also would like to explore adverse events to find new
applications [2] (drug repositioning or drug repurposing). Both of
the purposes can be attributed to accurately identify the potential
drug-target interactions (DTI). It is well known that experimental
validation of interactions is costly and laborious. Therefore, appli-
cation of in silico methods for this challenge is needed.

Several traditional methods [3,4], such as ligand-based QSAR
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(quantitative structureeactivity relationship) and receptor-based
docking, are often used to predict DTI. However, they often have
limitations. For QSAR, its performance might be decreased when
the training samples are not enough. For docking, it largely depends
on the 3D crystal structures of protein targets. Therefore, it is
difficult to study DTI for membrane proteins due to the limited
number of known 3D structures. In addition, docking-based
methods are not computationally efficient and previous studies
mostly focused on one single target. With the advent of chemo-
genomics research accelerated by high-throughput screening (HTS)
campaigns of large-scale chemical libraries and the completion of
human genome project, more chemical and genomic data are now
publicly available, which enables researchers to study DTI at a large
scale, such as studying interactions among multiple drugs and
multiple targets using computational approaches.

In 2008, Yamanishi and colleagues [5] proposed a bipartite
network method for the integration of chemical and genomic
spaces to predict DTI of four classes of protein targets, i.e., enzymes,
ion channels (IC), G protein-coupled receptors (GPCR) and nuclear
receptors (NR). Their models suggested many potential interaction
pairs between drugs and targets. As a following study, Bleakley
et al. [6] proposed a novel supervised inference method to predict
unknown drug-target interactions from the same datasets used by
Yamanishi and co-workers. Their kernel-based models using sup-
port vector machine (SVM) transformed the edge-prediction
problem into the binary classification problem of points with la-
bel. Results from their models gave high performance in terms of
AUC (area under receiver operating characteristic curve) and AUPR
(area under precisionerecall curve).

van Laarhoven et al. [7] used a simple machine learning method
called (kernel) regularized least squares (RLS) to predict DTI by
using only the topological information from the adjacencymatrix of
drug-target network. Then they defined a kernel on the topology
profiles, called Gaussian interaction profile (GIP) kernel. Using the
only defined kernel, results from their models exhibited a signifi-
cant improvement for AUPR over results of the state-of-the-art
methods at that time. Furthermore, they found that by combining
the topological information with others (such as chemical and
genomic information), the performance could further be improved.
However, their method was focusing on the setting where both
drugs and targets are known, which means that they used known
interactions for predicting novel ones. Thus, for the situationwhere
both drugs and targets are new (meaning that there are not in-
teractions between them), these models are not feasible. In order to
overcome such limitation, Mei and co-workers [8] introduced a
neighbor-based interaction-profile inferring (NII) method and in-
tegrated it into the existing bipartite local model (called BLM-NII).
By incorporating NII algorithm, the performance of DTI pre-
dictions for the four benchmark datasets presented a significant
improvement, which turned out to be the best results.

Apart from the aforementioned popular methods for predicting
DTI, various novel statistical methods were also proposed, such as
restricted Boltzmann machines [9], Bayesian matrix factorization
[10], even ranking-based method [11]. All these methods exhibited
good performance but those kernel-based methods have been the
most popular ones.

It is noted that the previous kernel-based methods [7,8] for DTI
predictions used only a simple linear combination of different
kernels as input to form final kernel matrix. However, that
approach may not be appropriate when linear relationship is not
evident among kernels. Thus, in this work, we explored a nonlinear
kernel fusion (KF) technique, which was originally applied suc-
cessfully in patient similarity network by Wang et al. [12], to
combine different kernels for predicting DTI. The kernel fusion al-
gorithm can derive both shared and complementary information

from various kernel matrices, even those from a small number of
samples. In order to validate the effectiveness of our proposed al-
gorithm, we integrated a simple but effective regularized least
squares (incorporating NII) with novel nonlinear kernel fusing
(RLS-KF) technique, and compared the results of DTI predictions for
the four benchmark DTI datasets [5] with those from previously
reported methods. Moreover, we recalculated the kernel matrices
of drug compounds and target proteins, and results based on this
exhibited a further improvement especially for the small NR data-
set. Importantly, most of the top predicted interaction pairs have
been successfully validated by either experimental data reported in
the literature, confirmatory assay results in the PubChem BioAssay
database, as well as by results in other previous studies.

2. Material and experimental methods

2.1. Dataset

Four drug-target interaction networks, including enzymes, ion
channels, G protein-coupled receptors and nuclear receptors in
human, originally studied by Yamanishi et al. [5], were used as the
benchmark datasets in the current work. These interaction infor-
mation was retrieved from KEGG BRITE [13], BRENDA [14], Super-
Target [15] and DrugBank [16] databases. Protein sequences of the
target proteins were obtained from the KEGG GENES database [13].
Target sequence similarity matrices (denoted by St, which is an M
by M square matrix, where M denotes the number of targets) be-
tween proteins were computed using a normalized version of
Smith-Waterman score [17]. Chemical compounds were derived
from the KEGG DRUG and COMPOUND databases [13]. Chemical
structure similarity matrices (denoted by Sd, which is an N by N
square matrix, where N denotes the number of drugs) between
compounds were computed using the SIMCOMP tool [18]. TheM by
N adjacency matrix, Y, where Yij ¼ 1 if drug i interacts with target j,
and Yij ¼ 0 otherwise, was the same to that used in the previous
study [5]. Table 1 lists the summary of all four datasets.

2.2. Problem formalization

Given three matrices, St, Sd and Y, the task is how to make use of
them to predict interactions between drug compounds and target
proteins, which includes four scenarios of interactions between
existing/new drugs and targets as described in the literature [8]. A
brief diagram (Fig. 1) is given to explain the notation of existing/
new drugs and targets, which assumes there are 4 targets (T1
through T4) and 5 drugs (D1 through D5) in total. Taking the first
drug, D1, as a query drug, the purpose of current work is to predict if
D1 interacts with T1 (in the test set) by using the related informa-
tion from the training set (labeled in red). If there is at least one
interaction known between D1 and any target from T2 through T4,
then the current query drug is denoted as an existing drug (Fig. 1A
and B), or a new drug otherwise (Fig. 1C and D). Similarly for the
definition of existing targets and new targets, if there is at least one
interaction between T1 (in the test set) and any drug from D1
through D5, the current target is denoted as an existing target
(Fig. 1A and C), or a new target otherwise (Fig. 1B and D). Thus, four

Table 1
Summary of the four benchmark datasets.

Data Enzymes IC GPCR NR

Number of targets 664 204 95 26
Number of drugs 445 210 223 54
Number of interactions 2926 1476 635 90
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