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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� Prediction uncertainty in multivar-
iate calibration is addressed.

� Homo-, heteroscedastic and corre-
lated error structures are studied.

� Closed-form expressions for predic-
tion errors are derived.

� Different error sources can be
discerned.
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a b s t r a c t

Most of the current expressions used to calculate figures of merit in multivariate calibration have been
derived assuming independent and identically distributed (iid) measurement errors. However, it is well
known that this condition is not always valid for real data sets, where the existence of many external
factors can lead to correlated and/or heteroscedastic noise structures. In this report, the influence of the
deviations from the classical iid paradigm is analyzed in the context of error propagation theory. New
expressions have been derived to calculate sample dependent prediction standard errors under different
scenarios. These expressions allow for a quantitative study of the influence of the different sources of
instrumental error affecting the system under analysis. Significant differences are observed when the
prediction error is estimated in each of the studied scenarios using the most popular first-order
multivariate algorithms, under both simulated and experimental conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

First-order multivariate calibration is today dominated by latent

variable based models. Among them, the most popular ones are
principal component regression (PCR) [1] and partial least-squares
(PLS) regression [2e4]. The latter involves a modification of the
former tomodel the datawith fewer latent variables, but there is no
clear advantage in terms of quantitative predictive ability [5].
Despite the widespread use of these calibration models in analyt-
ical chemistry, one important feature that has been somewhat
neglected is the fact that they work optimally when the measure-
ment errors are independently and identically distributed with a
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normal distribution (iid normal). The same situation stands for the
estimation of important analytical figures of merit, most of which
have been defined within the same iid context [6e12]. The subject
has arisen considerable interest in recent years, particularly in the
present Journal [7e12].

Traditional multivariate calibration methods can often obtain
satisfactory results when modest deviations from the ideal iid
conditions are present, although this leads to increasing prediction
errors [13]. When the error structure significantly deviates from the
ideal situation, specific actions may be required to improve cali-
bration performance. There are two alternatives in this regard. One
is to apply a suitable data preprocessing method prior to the clas-
sical calibration procedure, which modifies the error structure to
approximate the iid case (i.e. match the error structure to the
model). However, this approach is only possible for certain error
structures and such preprocessing may yield suboptimal results
when misapplied [13]. The second option is to use an algorithm
based on maximum likelihood (ML) principles such as MLPCR (i.e.
match the model to the error structure) [14,15]. This latter alter-
native requires the estimation of the error covariance matrix
associated with the error structure by replication and/or modeling
[16].

Irrespective of the applied model, the definition of the figures
of merit necessary to evaluate and validate the performance of the
models operating in a non-iid context is still unclear. Further
research is needed to uncover how and to what extent the
different error sources affect error propagation in the data under
analysis [17]. An approximation based on the value of the mean
square error of calibration (MSEC) has been proposed and tested
for second-order data [18]. However, this approach is suitable if
the measurement noise is the same during both calibration and
prediction stages. Moreover, it takes into account the overall effect
of the measurement noise, without insight into the specific
properties of the individual error sources. This is a fundamental
aspect in the development of analytical instrumentation. If one
could separately identify the influence of each error source on the
final prediction uncertainty, limiting sources of errors could be
identified and possibly mitigated to improve the overall quality of
the result.

A relevant figure of merit is the sensitivity, which lies at the core
of the definition of most analytical quality metrics [19e21]. The
sensitivity estimator is well-defined by a general expression
covering different algorithms and data orders, i.e., from univariate
to multiway calibration [6]. The general formula discussed in the
latter report was derived by considering the sensitivity as the ratio
of input to output noise, assuming that the input noise is iid. The
latter is used as a small perturbing probe which allows one to
investigate how it propagates to prediction. However, no assump-
tions are made regarding the properties of the real experimental
noise affecting the system [6]. As a consequence, the interpretation
of the sensitivity parameter remains invariable, even when the
noise deviates from the iid structure.

However, the prediction uncertainty and other relevant figures
of merit that depend on it are significantly affected by the noise
structure, as will be clear below. Important reasons for conducting
further studies in this field are: (1) all validation procedures
require, as a good analytical practice, to report a result together
with a reliable estimate of its uncertainty [22,23], and (2) uncer-
tainty estimation is a key step in the calculation of other important
figures of merit such as the limit of detection [24]. Even when
replicate sample analysis may allow for the experimental estima-
tion of the overall prediction uncertainty, studies such as the pre-
sent one provide further insight into the different error sources
affecting the latter. This is important regarding method optimiza-
tion aimed at precision improvement, which can be achieved even

in the absence of replicates [25].
The error covariance matrix is central to error propagation

procedures estimating prediction uncertainty in first-order multi-
variate calibration. However, relevant expressions for prediction
uncertainty have been derived under the iid assumption, without
going deeper into the consequences of non-iid situations [23]. On
the other hand, Wentzell et al. have highlighted the importance of
estimating the noise structure of multivariate data, proposing and
testing different methods to model the error covariance matrix
[16]. Even in the absence of replicates, heteroscedastic noise can be
characterized using a strategy based on a high-pass digital filter
[25]. This is an important step to identify non-iid data sets, but does
not cover the presence of correlated errors. These two lines of work,
involving the estimation of the prediction uncertainty and of the
error covariance matrix, are complementary, although no efforts
have been undertaken to combine them.

In this work, a general scheme to estimate sample dependent
uncertainties in first-order multivariate calibration is presented. It
is based on a local linearization/error propagation approach, and
requires an adequate estimation of the covariance matrix charac-
terizing the error structure. Three possible situations are described,
depending on the type of measurement noise structure for the
samples under analysis. Comparison and validation of the results
obtained by the proposed expressions is supported by noise addi-
tion simulations, and confirmed in some experimental data sets.
The presently discussed strategy was developed and tested for both
classical PCR and PLS calibration models, these representing the
most widely applied inverse least squares methods (even when iid
assumptions are not valid) and the most straightforward cases. The
validity of the prediction error expressions is not contingent on the
optimality of the model (providing it is unbiased). The obtained
results are relevant to the estimation of further figures of merit
which are a function of the prediction uncertainty, such as the
limits of detection and quantitation.

2. Theory

2.1. Latent variable based regression methods

PCR and PLS are the most widespread regression techniques for
first-order analytical calibration [3,4]. These models are similar in
their basic philosophy: they project the original variables into a
vectorial subspace defined to extract the maximum significant
variance of the data [3]. This projection shows the main advantage
of compressing the information contained in the original data, in
such a way that only the relevant information concerning the
quantitation of the analyte of interest is kept, while removing small
and random noise variability [3]. This also allows one to deal with
the usual problems of collinearity (similar spectral responses for
the analyte and the interferences) and rank deficiency (number of
instrumental sensors larger than number of calibration samples)
[3]. These advantages readily explain the popularity of the PCR/PLS
approaches, and their success compared to other less complex first-
order algorithms such as classical least-squares (CLS) [26] and
multiple linear regression (MLR) (sometimes also called inverse
least-squares or ILS) [26].

The prediction step for PCR and PLS can be expressed as:

by ¼ t Tþycal (1)

where by is the predicted analyte concentration (or other predicted
quantity) in the test sample, the vector t contains the scores
calculated for the test sample (size 1 � a), ycal is the vector of
reference values used for calibration (size m � 1, where m is the
number of calibration samples) and T is the matrix of calibration
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