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� The multivariate curve resolution
problem is solved on a sequence of
coarsened levels of resolution.

� Proper restriction and prolongation
operations allow to transfer the
factorization results between the
levels of resolution.

� The new algorithm allows to reduce
the computational costs by nearly the
factor 10.

� The multiresolution MCR method is
tested for model and for experi-
mental data for different coarsening
strategies.

� The multiresolution approach can
also be applied to similar optimiza-
tion problems in chemometrics.
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a b s t r a c t

Modern computerized spectroscopic instrumentation can result in high volumes of spectroscopic data.
Such accurate measurements rise special computational challenges for multivariate curve resolution
techniques since pure component factorizations are often solved via constrained minimization problems.
The computational costs for these calculations rapidly grow with an increased time or frequency reso-
lution of the spectral measurements.

The key idea of this paper is to define for the given high-dimensional spectroscopic data a sequence of
coarsened subproblems with reduced resolutions. The multiresolution algorithm first computes a pure
component factorization for the coarsest problem with the lowest resolution. Then the factorization
results are used as initial values for the next problem with a higher resolution. Good initial values result
in a fast solution on the next refined level. This procedure is repeated and finally a factorization is
determined for the highest level of resolution. The described multiresolution approach allows a
considerable convergence acceleration. The computational procedure is analyzed and is tested for
experimental spectroscopic data from the rhodium-catalyzed hydroformylation together with various
soft and hard models.
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1. Introduction

The LamberteBeer law determines the absorption d(t,n) for an s-
component system with time-dependent concentration profiles
ci(t), i ¼ 1,…,s, and frequency-dependent pure component spectra
ai(n) in the form

d t; nð Þ ¼
Xs
i¼1

ci tð Þai nð Þ þ e (1)

with small error terms e. The continuous-time-frequency model is
approximated in practical spectroscopic measurements if spectro-
scopic data is recorded on a discrete time-frequency grid. For k
separate spectra which include a number of n spectral channels the
measurements can be recorded in a k-times-n matrix D.

Multivariate curve resolution methods aim at a factorization of
this k � n matrix D in a nonnegative matrix C2ℝk�s of concen-
tration profiles and a nonnegative matrix A2ℝs�n of pure compo-
nent spectra. If a coarse time-frequency grid is selected, i.e. the
number kn is small, then the computational costs for the deter-
mination of a feasible factorization CA are relatively small. But the
resulting small matrices constitute only a poor approximation of
the continuous model. In contrast to this, a high time-frequency
resolution with potentially oversampled data can yield accurate
results at the cost of time-consuming computations. Typically the
number k of spectra and the number n of channels are determined
by the experimental setup and the spectrometer. The key point of
this paper is to develop a computational strategy which uses a
sequence of submatrices

Dð1Þ;Dð2Þ;…;DðLÞ

of the spectral data matrix D2ℝk�n in order to accelerate the pure
component factorization. These submatrices D(i) are representa-
tions of the initial matrix D ¼ D(0) with lower resolutions. The
nonnegative factorization problem is solved in a way that first the
matrix D(L) with the lowest resolution, which is the smallest sub-
matrix, is factored. Then the factorization with respect to the cur-
rent grid is used as the starting point for the iterative factorization
procedure on the next finer time-frequency grid. The resulting
iterative procedure is much faster compared to a direct computa-
tion of the factorization of the initial high-dimensional matrix
D ¼ D(0).

Such a successive approximation of the solution of a general
optimization problem (not necessarily related to chemometrics)
with respect to the finest grid by means of a sequence of relaxed
subproblems, which are cheaper or easier to solve, is a well-known
iterative technique for high-dimensional problems. For some clas-
ses of problems the sequence of coarsened grids can be used in
order to construct very effective solvers for the problem. This is
especially the case for the famous multigrid or multilevel methods
for the solution of boundary value and eigenvalue problems for
elliptic partial differential operators by means of a finite element
method [10]. For these problems one has to solve a minimization
problem for the elliptic energy functional or for the Rayleigh quo-
tient [4].

The present chemometric matrix factorization problem, which
is essentially a multicomponent decomposition, can also be
formulated as a minimization problem. For high-dimensional data
the solution of suchminimization problems can be extremely time-
consuming. A severe obstacle to a fast numerical solution of the
nonnegative matrix factorization is the non-uniqueness of its

solutions. This fact is paraphrased by the rotational ambiguity of the
solution [1,2,18,25]. A possible approach to single out specific
important solutions from the continuum of feasible nonnegative
solutions is the usage of hard or soft models [5,12,17]. Finally, a
constrained minimization problem is to be solved and the
computational costs for the minimization of the target function
depend on the dimension of D and on the number of necessary
iterations. The number of iterations decreases if the quality of the
initial approximation increases.

1.1. Central idea

The aim of this paper is to introduce a multiresolution method
for the convergence acceleration of a multivariate curve resolution
method. The key idea is to utilize a sequence of coarsened factor-
ization problems in order to compute an associated sequence of
gradually refined approximations of the solution. The coarsest
problem can be solved with relatively low computational costs and
provides good starting values for the factorization problem for the
next refined resolution level. These two steps of a correction of the
solution with respect to a given resolution level together with the
subsequent refinement form a “correction-refinement cycle”. This
cycle is applied on the sequence of refined grids until a nonnegative
matrix factorization of the initial spectral data matrix D is
computed, see Fig. 1.

1.2. Organization of the paper

The paper is organized as follows: In Section 2 a short intro-
duction to multivariate curve resolution techniques is given which
includes the principles of soft- and hard-modeling. The central
multiresolution approach is introduced in Section 3. Its application
to model data and to experimental data from the rhodium-
catalyzed hydroformylation process is presented in Section 4.
Different strategies for the refinement steps are analyzed.

2. Multivariate curve resolution methods

Multivariate curve resolution methods are powerful tools to
extract pure component information from spectroscopic data of
chemical mixtures. The spectroscopic measurements are recorded
in a k � n absorption matrix D with k points in time of measure-
ment along the time axis and n spectral channels along the fre-
quency axis. Whereas the continuous form of the LamberteBeer
law is given in (1) its discrete matrix form reads

DzCAþ E:

The small error term E collects all measurement errors and
nonlinearities. Thematrix C2ℝk�s of concentration profiles and the
matrix A2ℝs�n of the spectra contain columnwise or rowwise the
information on the s pure components. The factors C and A and the
spectral data matrix D are componentwise nonnegative matrices.
The mathematical problem is to compute a chemically meaningful
nonnegative matrix factorization CA from a given D. The most
common way to compute this factorization is to start with a sin-
gular value decomposition (SVD) ofDwith the form D¼ USVT, [8]. If
D has the rank s, then the matrix can also be represented by a
truncated SVD. This truncated SVD uses only the first s columns of U
and V. Then S is an s � s diagonal matrix containing the s largest
singular values on its diagonal. With these matrices the desired
factors C and A can be constructed with a regular matrix T2ℝs�s as
follows
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