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H I G H L I G H T S G R A P H I C A L A B S T R A C T

� Calibration transfer involving indi-
vidual wavelengths.

� Suitable for dedicated instruments.
� Examples involving near infrared
spectrometric analysis of gasoline
and corn.

� Better results compared to piecewise
direct standardization (PDS).
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A B S T R A C T

This paper proposes a newmethod for calibration transfer, which was specifically designed towork with
isolated variables, rather than the full spectrum or spectral windows. For this purpose, a univariate
procedure is initially employed to correct the spectral measurements of the secondary instrument, given
a set of transfer samples. A robust regression technique is then used to obtain a model with low
sensitivity with respect to the univariate correction residuals. The proposed method is employed in two
case studies involving near infrared spectrometric determination of specific mass, research octane
number and naphthenes in gasoline, and moisture and oil in corn. In both cases, better calibration
transfer results were obtained in comparisonwith piecewise direct standardization (PDS). The proposed
method should be of a particular value for usewith application-targeted instruments that monitor only a
small set of spectral variables.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

The development of multivariate calibration models involves
several stages, typically including the collection of samples and
recording of analytical signals, followed by the actual construction

and validation of the model. All these stages are important to
achieve good predictions when the resulting model is employed in
the analysis of new samples. In particular, it would be desirable to
eliminate or minimize the sources of data variability that are not
related to the analytical property of interest. However, there are
cases in which changes in the analytical conditions occur after
the calibration has been carried out, with adverse effects on the
prediction ability of the model [1,2]. Such changes may refer to the
physical/chemical characteristics of the sample (such as viscosity,
granularity, surface texture, and presence of interferent species),

* Corresponding author. Tel.: +55 83 3216 7438; fax: +55 83 3216 7437.
E-mail addresses: laqa@quimica.ufpb.br, mariougulino@gmail.com

(M.C.U. Araújo).

http://dx.doi.org/10.1016/j.aca.2014.10.001
0003-2670/ã 2014 Elsevier B.V. All rights reserved.

Analytica Chimica Acta 864 (2015) 1–8

Contents lists available at ScienceDirect

Analytica Chimica Acta

journa l homepage: www.e lsevier .com/ locate /aca

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aca.2014.10.001&domain=pdf
mailto:laqa@quimica.ufpb.br
mailto:mariougulino@gmail.com
http://dx.doi.org/10.1016/j.aca.2014.10.001
http://dx.doi.org/10.1016/j.aca.2014.10.001
http://www.sciencedirect.com/science/journal/00032670
www.elsevier.com/locate/aca


environmental conditions (temperature and humidity, for
instance), as well as the response function of the instrument
itself. Issues associated to the instrument response typically arise
because of general aging effects, deterioration of specific parts or
maintenance interventions. Difficulties may also arise if the
instrument employed for data acquisition is not the same used
for building the calibration model [1].

Such changes can be taken into account by recalibrating the
model using a data set acquired under the new analytical
conditions. However, this procedure may be expensive, laborious
and time-consuming, as the entire model-building process would
need to be repeated. Alternatively, different methods have been
developed to compensate for changes in the experimental
conditions without the need for a full model recalibration.
Examples include direct and piecewise direct standardization
[3], baseline correction [4], multiplicative signal correction [5],
finite impulse response filtering [6], orthogonal signal correction
[7], wavelet decompositions [8], and transfer by orthogonal
projections [9], among others. In this context, a typical application
consists of transferring the calibration from a primary (or
“master”) instrument to a secondary (or “slave”) one.

Within the scope of spectrometric techniques, calibration
transfer is usually based on mathematical transformations
involving the overall spectrum or windows of variables within
the spectrum. For this purpose, a set of Ntrans “transfer samples”
measured at both instruments can be used to build a standardiza-
tion model of the form

XP ¼ XSF (1)

where matrices XP (Ntrans� p) and XS (Ntrans� p) comprise the
spectra of the transfer samples acquired in the primary and
secondary instruments, respectively. The transformation matrix F
(p� p) is typically obtained by principal component regression or
partial least squares from the data in XP and XS [1]. This matrix can
be used to standardize a new spectrum xS (1� p) acquired at the
secondary instrument as

x̂ P ¼ xSF (2)

in order to generate an estimate x̂P (1� p) of the spectrum xP that
would be obtained if the measurements were carried out at the
primary instrument. Eq. (2) can also be written as

x̂k
P ¼ xSfk; k ¼ 1;2; . . . ; p (3)

where x̂k
P denotes the kth variable of the standardized spectrum

and fk is the kth column of the transformation matrix F.
An example of this calibration transfer procedure is the

piecewise direct standardization (PDS) method [10,11], which is
often used as a benchmark in comparative studies. In PDS, the
standardizationmodel relates each spectral variable in the primary
spectrumwith awindowof variables in the secondary spectrum. In
this case, the transformation matrix F has a sparse structure,
because each column fk will only have nonzero values within a
window around the kth element.

At this point, one may argue that methods such as PDS would
not be appropriate for use with application-targeted instruments
that monitor only a small set of spectral variables using filters
[12,13] and/or light emitting diodes [14,15], for example. In such a
case, it would not be possible to derive a standardization model
based on spectral windows, because the measurements would be
related to isolated wavelengths. Within this scope, this paper
proposes a new method for calibration transfer, which was
specifically designed to work with isolated variables, rather than

spectral windows. For this purpose, a univariate procedure is
initially employed to correct the spectral measurements of the
secondary instrument, given a set of transfer samples [1]. A robust
regression technique is then used to build a new multivariate
calibrationmodel with low sensitivitywith respect to the residuals
of the univariate correction procedure. This new model is
specifically designed for use with the corrected spectra of the
secondary instrument. The use of robust regression in this context
is the main contribution of the present work.

Two data sets are employed to illustrate the proposed method.
The first data set consists of gasoline samples with FT-NIR spectra
from two spectrometers, as well as reference values of specific
mass, RON and naphthenes. Specific mass is routinely used to
monitor fuel quality, as well as to check conformity with the
standards issued by the regulatory agencies. The other two
parameters were included in the study to represent the classes of
composition-related and global physical properties, as in [16]. The
second data set, which is publicly available, consists of corn
samples with NIR spectra from two spectrometers and reference
values of moisture and oil.

In both case studies (gasoline and corn), the transfer of
calibration is concerned with a subset of spectral variables
previously selected using a genetic algorithm (GA) [17].
The results are compared with those obtained using a full-
spectrum partial least squares (PLS) model with PDS calibration
transfer.

2. Background and theory

2.1. Robust regression

The mathematical development in this section is adapted from
the formulation presented in [18]. Initially, let us assume that the
property of interest y is to be related to p spectral variables x1, x2,
. . . , xp by a linear empirical model of the form y = xb + e, where
x = [x1, x2, . . . , xp], b= [b1, b2, . . . , bp]T is a vector of coefficients to
be determined, and e denotes the model residual. If a matrix X
(N� p) of instrumental responses and a vector y (N�1) of
reference property values are available for N� p calibration
samples, the least-squares (LS) estimate for the vector of model
coefficients b= [b1, b2, . . . , bp]T is the one that minimizes the
following cost function:

JðbÞ ¼ k Xb� y k2 (4)

which corresponds to the squared 2-norm of the model residuals.
The solution is given by

bLS ¼ ðXTXÞ�1XTy (5)

assuming that the variables were appropriately selected so that
XTX is invertible. This is the standard formulation for multivariate
calibration by multiple linear regression (MLR).

Now suppose that the instrumental response vector x may be
affected by a stochastic perturbationDx of zeromean and a known
covariance. In this case, a more robust solution to the regression
problem can be obtained by minimizing the following cost
function:

JðbÞ ¼ E k ðXþDXÞb� y k2 (6)

where E denotes the expectancy operator for random variables. In
this equation,DX (N� p) is a perturbation termwith E[DX] =0 and
E[DXTDX] =R, whereR is a known (p� p)matrix. This cost function
can be re-written as
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