Analytica Chimica Acta 888 (2015) 155-161

Contents lists available at ScienceDirect

Analytica Chimica Acta

journal homepage: www.elsevier.com/locate/aca

A highly sensitive and selective fluorescent probe for trivalent aluminum ion based on rhodamine derivative in living cells

ANALYTICA CHIMICA ACTA

Jia-Liang Tang ^a, Chun-Yan Li ^{a, *}, Yong-Fei Li ^b, Xi Lu ^a, Hong-Rui Qi ^{a, **}

^a Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China

^b College of Chemical Engineering, Xiangtan University, Xiangtan, 411105, PR China

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- A rhodamine derivative is used as a colormetric and fluorescent chemosensor for Al³⁺.
- The chemosensor exhibits a highly sensitive response with a 70-fold enhancement.
- The chemosensor exhibits a high selectivity for Al³⁺ over other metal ions.
- The chemosensor has been used in water samples and living cells successfully.

ARTICLE INFO

Article history: Received 18 June 2015 Received in revised form 17 July 2015 Accepted 19 July 2015 Available online 10 August 2015

Keywords: Probe Fluorescence Rhodamine Off-on Aluminum ion Cell imaging

1. Introduction

Aluminum is the most abundant (8.3% by weight) metallic

ABSTRACT

A rhodamine spirolactam derivative (**1**) is developed as a colormetric and fluorescent probe for trivalent aluminum ions (AI^{3+}). It exhibits a highly sensitive "turn-on" fluorescent response toward AI^{3+} with a 70-fold fluorescence intensity enhancement under 2 equiv. of AI^{3+} added. The probe can be applied to the quantification of AI^{3+} with a linear range covering from 5.0×10^{-7} to 2.0×10^{-5} M and a detection limit of 4.0×10^{-8} M. Most importantly, the fluorescence changes of the probe are remarkably specific for AI^{3+} in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the experiment results show that the response behavior of **1** towards AI^{3+} is pH independent in neutral condition (pH 6.0–8.0) and the response of the probe is fast (response time less than 3 min). In addition, the proposed probe has been used to detect AI^{3+} in water samples and image AI^{3+} in living cells with satisfying results.

© 2015 Elsevier B.V. All rights reserved.

element and the third most abundant of all elements in the earth's crust [1,2]. The leaching of aluminum from soil by acid rain increases the free AI^{3+} in the environment and surface water, which is deadly to growing plants [3,4]. And its toxicity causes microcytic hypochromic anemia, Al-related bone disease (ARBD), encephalopathy and neuronal disorder that will lead to dementia, myopathy and Alzheimer's disease [5,6]. Due to the potential impact of aluminum ions (AI^{3+}) on the environment and human health, the effective detection of AI^{3+} ions is needed.

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: lichunyan79@sina.com (C.-Y. Li), hongruiqi@163.com (H.-R. Qi).

Fluorescent probes have attracted considerable interest due to their high sensitivity, selectivity, rapid response rate and simple manipulation [7–9]. So far, some fluorescent probes have been developed for detection of Al^{3+} [10–27]. However, most of them suffer from some limits, such as short emission wavelength [10–13], poor selectivity [10–26], being unsuitable for the applications of biological systems [11–19,27] (Table 1). So the probes for Al^{3+} with excellent performance are still urgently needed.

Rhodamine dyes have recently attracted much attention in fluorescence sensing and bioimaging due to their excellent photophysical properties, such as high fluorescence quantum yield, visible absorption and fluorescence emission [28,29]. As we know, the rhodamine with spirolactam structure is colorless and non-fluorescent, whereas ring-opening of the spirolactam induced by the analyte gives rise to pink color and a strong fluorescence emission. Actually, it is an ideal mode to construct probes. Up to now, a number of rhodamine spirolactam-based probes have been designed for metal cations including Cu²⁺ [30–32], Hg²⁺ [33–35], Zn²⁺ [36,37], Pb²⁺ [38], Fe³⁺ [39], Cr³⁺ [40] and conventional anions such as CN⁻ [41], F⁻ [42], P₂O⁴⁻ [19] and CH₃COO⁻ [43]. However, the probes for Al³⁺ are rare [18,19,23–27]. Moreover, few probes have been proposed for intracellular imaging of Al³⁺.

In this paper, we design and synthesize a new rhodamine-based fluorescent probe **1** for colormetric and fluorescent determination of AI^{3+} . Probe **1** is colorless and exhibits weak fluorescence. Binding AI^{3+} to probe **1** induced ring-opening of rhodamine, which resulted in color change from colorless to pink and red strong emission. In particular, probe **1** provides excellent selectivity toward AI^{3+} over other metal ions. Furthermore, probe **1** has been successfully applied in the detection and quantification of AI^{3+} in water samples and used to image AI^{3+} in living cells.

2. Experimental

2.1. Reagents

Twice-distilled water was used throughout all experiments. Diethylenetriamine, rhodamine B and 2-thiophenecarboxaldehyde were purchased from Sigma—Aldrich. All other chemicals were of analytical reagent grade, purchased from Shanghai Chemical Reagent Corporation (Shanghai, China), and used without further purification. Thin layer chromatography (TLC) was carried out using

Table 1
The comparison of this probe with some other fluorescent probes for AI^{3+}

silica gel 60 F254, and column chromatography was conducted over silica gel (200–300 mesh), both of which were obtained from the Qingdao Ocean Chemicals (Qingdao, China).

2.2. Syntheses

A convenient synthetic route for compound **1** from commercially available compounds was provided and depicted in Fig. 1.

Compound 2: Rhodamine B (8.00 g, 16.8 mmol) and diethylenetriamine (40.0 mL, 368 mmol) were dissolved in ethanol (100 mL). The reaction mixture was stirred and refluxed for 24 h. After the solvent was evaporated under reduced pressure, the crude product was purified by silica gel column chromatography using CH₂Cl₂/C₂H₅OH (10:1, v/v) as eluent to afford a pink solid product. Yield: 0.609 g (6.40%). ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 8.0 Hz, 1H), 7.42 (m, 2H), 7.08 (m, 1H), 6.42 (d, J = 8.0 Hz, 2H), 6.36 (s, 2H), 6.26 (d, J = 8.0 Hz, 2H), 3.35-3.18 (m, 10H), 2.71 (d, J = 8.0 Hz, 2H), 2.55 (t, J = 8.0 Hz, 2H), 2.20 (t, J = 8.0 Hz, 2H), 1.16 (t, J = 8.0 Hz, 12H). MS (TOF) m/z calcd. for C₃₂H₄₂N₅O₂ (M + H) 528.334, found 528.336.

Compound 1: Compound 2 (0.530 g, 1.00 mmol) and 2-Thiophenecarboxaldehyde (0.130 g, 1.20 mmol) were dissolved in ethanol (50.0 mL). The reaction mixture was stirred and refluxed for 12 h. After the solvent was evaporated under reduced pressure, the crude product was purified by silica gel column chromatography using CH_2Cl_2/C_2H_5OH (15:1, v/v) as eluent to afford a yellow solid product. Yield: 0.250 g (40.2%). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.0 Hz, 1H), 7.49 (s, 2H), 7.36 (m, J = 8.0 Hz, 1H), 7.26 (s, 2H), 7.10 (d, J = 8.0 Hz, 2H), 6.46 (d, J = 8.7 Hz, 2H), 6.42 (s, 2H), 6.28 (d, J = 8.5 Hz, 2H), 3.77 (t, J = 9.8 Hz, 2H), 3.38-3.23 (m, 12H), 1.29 (s. 2H), 1.15 (t, J = 6.5 Hz, 12H). ¹³C NMR (100 MHz, CDCl₃): δ 168.3, 160.4, 153.5, 153.3, 148.9, 132.6, 132.1, 131.1, 128.9, 128.2, 128.1, 127.6, 123.9, 122.7, 108.2, 105.1, 97.6, 77.5, 77.2, 76.9, 65.0, 52.3, 52.0, 47.2, 44.4, 39.2, 29.7, 12.6. MS (TOF) m/z 622.4. MS (TOF) m/z calcd. for $C_{37}H_{43}N_5O_2S$ (M + H) 622.322, found 622.321. Anal. calcd. for C₃₇H₄₃N₅O₂S: C, 71.47; H, 6.97; N, 11.26; O, 5.15. Found: C, 71.82; H, 6.89; N, 11.33; O, 5.04.

2.3. Apparatus

UV-vis absorption spectra were recorded with a Perkin Elmer Lambda 25 spectrophotometer. All fluorescence measurements

Probe	λ_{em} (nm)	Operating range (µM)	Detection limit (µM)	Response time (min)	Interferents	Application
Ref. [10]	400	1-25	1.06	<3	Cr^{3+} , Co^{2+} , Ga^{3+} , In^{3+}	Cell image
Ref. [11]	443	a	0.1	-	\ln^{3+}, Cu^{2+}	_
Ref. [12]	475	_	0.2	_	Fe^{3+} , Cr^{3+}	_
Ref. [13]	460	1-10	_	-	Pb^{2+} , Zn^{2+}	_
Ref. [14]	603	_	0.5	_	Pb^{2+}	_
Ref. [15]	557	_	0.5	-	In ³⁺	_
Ref. [16]	665	_	0.12	-	In ³⁺	_
Ref. [17]	531	_	10	-	Cu ²⁺	_
Ref. [18]	552	-	0.86	-	Ga ³⁺	_
Ref. [19]	585	4.0-40	4.0	-	Cr ³⁺ , Fe ³⁺ , Hg ²⁺	_
Ref. [20]	510	0-13	_	-	Ga ³⁺	Cell image
Ref. [21]	675	0-16	0.0324	-	Fe ³⁺ , Cr ³⁺	Cell image
Ref. [22]	529	0-1	0.1	-	Ga ³⁺	Cell image
Ref. [23]	586	10-100	0.02	30	Hg ²⁺	Cell image
Ref. [24]	577	_	_	30	Cr ³⁺ , Fe ³⁺	_
Ref. [25]	585	0.05-0.8	0.005	30	Hg ²⁺	Cell image
Ref. [26]	530, 580	0.5-10	0.10	<2	Mn ²⁺	Cell image
Ref. [27]	584	0-18	0.0286	-	no	_
This probe	575	0.5-20	0.040	<3	no	Water sample, cell image

^a The data is not given in the literature.

Download English Version:

https://daneshyari.com/en/article/1163618

Download Persian Version:

https://daneshyari.com/article/1163618

Daneshyari.com