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H I G H L I G H T S G R A P H I C A L A B S T R A C T

� A new method for measuring orthog-
onality in multidimensional separa-
tions is introduced.

� Our method also diagnoses areas
where peaks are clustered in the
separation space.

� The new method comprises of a
number of equations which are easily
implemented in Microsoft Excel.

� We applied the method to 8 com-
puter-generated and 2 experimental
multidimensional chromatograms.

� The method compared favorably
against established methods.
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A B S T R A C T

Multi-dimensional chromatographic techniques, such as (comprehensive) two-dimensional liquid
chromatography and (comprehensive) two-dimensional gas chromatography, are increasingly popular
for the analysis of complex samples, such as protein digests or mineral oils. The reason behind the
popularity of these techniques is the superior performance, in terms of peak-production rate (peak
capacity per unit time), that multi-dimensional separations offer compared to their one-dimensional
counterparts. However, to fully utilize the potential of multi-dimensional chromatography it is essential
that the separation mechanisms used in each dimension be independent of each other. In other words,
the two separation mechanisms need to be orthogonal. A number of algorithms have been proposed in
the literature for measuring chromatographic orthogonality. However, these methods have their
limitations, such as reliance on the division of the separation space into bins, need for specialist software
or requirement of advanced programming skills. In addition, some of the existing methods for measuring
orthogonality include regions of the separation space that do not feature peaks. In this paper we
introduce a number of equations which provides information on the spread of the peaks within the
separation space in addition to measuring orthogonality, without the need for complex computations or
division of the separation space into bins.
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1. Introduction

When analysing very complex samples, it is essential to use a
technique that is capable of providing the maximum separation
power possible. Multi-dimensional chromatographic techniques,
for example comprehensive two-dimensional liquid chromatog-
raphy (LC � LC), are much more powerful than their one-
dimensional counterparts. This is because of the larger peak
capacity that multi-dimensional techniques afford in a reasonable
time [1,2]. The high peak capacities arise from the combination of
two or more separation techniques within the one system.
However, the choice of separation mechanisms in each dimension
has a large effect on whether the high peak capacity of the
corresponding multi-dimensional system can be effectively
exploited. In order to attain the maximum effective peak capacity,
the separation mechanisms in each dimension must be indepen-
dent from each other. In other words, the dimensions must be
chromatographically orthogonal [3]. Multi-dimensional techni-
ques that use orthogonal separation mechanisms are capable of
fully exploiting the various chemical and physical properties of the
sample to obtain better separations [3].

The importance of chromatographic orthogonality is not
restricted to multi-dimensional chromatography. In the pharma-
ceutical industry, part of the validation process for quality-control
methods requires the development of two separation methods, the
separation mechanisms of which must be chromatographically
orthogonal. This ensures that the quantification of impurities
within the sample is as accurate as possible [4].

The importance of chromatographic orthogonality has led to
the development of a variety of methods for its measurement,
particularly in multi-dimensional chromatography. Perhaps the
most widely known methods involve dividing the separation space
into bins.

The number of bins containing peaks is counted and related
back to the total number of bins within the separation space [5,6].
Another variation of the bin-counting method has been proposed
by D. Stoll, an author of [6]. It involves drawing a box around the
part of the separation space which contains peaks. The bins within
this box are counted and reported as a proportion of the total
number of bins within the separation space. These methods are
elegant in their simplicity and are effective. However, they are
strongly affected by the decision the user must make with regards
to the total number of bins to use in the division of the separation
space [7]. The total number of bins in these methods is meant to be
ideally equal to the total number of components within the sample.
With complex samples, which contain hundreds or perhaps even
thousands of peaks, determining the total number of components
in the sample is not straightforward. Peaks often co-elute within
such samples, making estimates of the total number of peaks (and,
thus, the ideal number of bins) quite error-prone. Furthermore, the
width of the bins is determined by the peak width, which is
assumed constant. This assumption or requirement is fine for
temperature programmed elution in GC and gradient elution in LC.
However, in GC � GC the second-dimension separation is usually
performed in (near-) isothermal mode and in LC � LC the second
dimension may also involve isocratic elution to eliminate the need
to equilibrate the column between runs. It is well known that the
peak width in isothermal GC or isocratic LC is not constant but
increases with increasing retention time. This could pose a
problem for the selection of the bin width. Another variant of
the bin-counting methods is the fractal approach [8]. Although it
relies on bin counting, it is implemented in quite a different
manner. This approach is based on the mathematical concept of
fractals which relates to the scaling of self-similar objects. In the
case of multi-dimensional separation, these self-similar objects are
bins. The implementation of this approach involves applying a

number of bins which scales with regards to the length/height of
the bins. The logarithm of the number of bins required to cover the
used separation space is plotted against the logarithm of the
length/height scaling parameter. The slope of this plot is multiplied
by �1 which results in a value of dimensionality [8]. For a
completely orthogonal two-dimensional separation, a dimension-
ality value of 2.00 is obtained. A completely non-orthogonal two-
dimensional separation would have a dimensionality value of 1.00
[8]. Because the dimensions of the bins is scaled, the fractal
approach does not rely on correct determination of the peak width
which gives it a potential advantage over more established bin
methods. However it still shares the other limitations of the bin-
counting methods. That is, the number of bins must be appropriate
for the number of sample components and it is not possible to
automate the fractal approach, at this stage. It is important to note
that the fractal approach loses the simplicity with which the Gilar
and Stoll bin-counting methods can be implemented. This ease of
implementation is one of the strong aspects of the Gilar and Stoll
bin-counting methods.

There are other methods that do not require the division of the
separation space into bins. Such methods include measures
derived from information theory [9], the minimum-convex-hull
method and the kernel method [10]. The information-theory
approach is based on determining the amount of mutual
information shared by the two dimensions. Such mutual
information includes the peaks which cluster along the right-
leaning (upward) diagonal of the separation space. The propor-
tion of mutual information compared to the total separation
space ‘entropy’, or the total spread of peaks, is expressed by the
term synentropy. In information theory an orthogonal separation
would have a synentropy value of 0% [9]. The downfall of this
technique for measuring orthogonality is its reliance on the
assumption that peaks only cluster along the upward diagonal.
This is certainly the most common form of clustering, but not the
only possible one. The spreading angle method of Liu, Patterson
and Lee [11] also shares this limitation. In this case, the measure
of orthogonality is the amount of separation space used. To
calculate this, two vectors corresponding to the retention times of
each dimension are determined. These vectors are used to create
a correlation matrix which is then used to determine the
correlation or peak spreading angle. Once this angle is known,
a fan-like shape is constructed with its apex located at the origin
of the separation space. The spreading angle determines the
width of the apex. The area enclosed within the fan describes the
area of the separation space occupied by peaks [11]. It is clear that
a fan with an apex located at the origin assumes that peaks tend to
only cluster around the upward diagonal of the separation space.
This limitation of the spreading angle method has been pointed
out previously [12,13].

Unlike in informational theory and the peak spreading angle,
peaks are not assumed to only cluster along the diagonal in the
convex-hull and kernel methods. The latter methods are often
used in ecological home-range studies and have recently been
applied to multi-dimensional chromatography [10]. Although,
these methods are reported to be quite effective, the minimum-
convex-hull method includes parts of the separation space which
do not include peaks, thus biasing the measure of orthogonality.
This is not so much the case in the kernel method. In the kernel
method, an area around each peak is blurred to form a kernel. The
summed area covered by the kernels is the indicator of the degree
of orthogonality in this method. The analyst sets a threshold which
is a multiple of the height of an individual kernel. However, it
should be noted that the selection of an appropriate threshold is
difficult [10] and appears to be done empirically. The amount by
which the summed kernel area exceeds the set threshold is the
measure of separation space coverage which is directly related to
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