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HIGHLIGHTS GRAPHICAL ABSTRACT

Nanoscale field-effect transducers
interrogate surface charge by con-
ductivity changes.

e The nanometer dimensions of SINWs
facilitate sensitive detection of bio-
molecules.

SiNWs can be fabricated by bottom-
up or top-down approaches.

e Device parameters and solution-
phase conditions strongly influence
analytical performance.
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ARTICLE INFO ABSTRACT
Article history: The unique electronic properties and miniaturized dimensions of silicon nanowires (SiNWs) are
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operate as field effect transistors (FETs) and can be fabricated either by top-down or bottom-up
approaches. Advances in fabrication methods have allowed for the control of physicochemical and
electronic properties of SiNWSs, providing opportunity for interfacing of SiNW-FET probes with
intracellular environments. The Debye screening length is an important consideration that determines
the performance and detection limits of SINW-FET sensors, especially at physiologically relevant
conditions of ionic strength (>100 mM). In this review, we discuss the construction and application of
SiNW-FET sensors for detection of ions, nucleic acids and protein markers. Advantages and disadvantages
of the top—-down and bottom-up approaches for synthesis of SINWs are discussed. An overview of various
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methods for surface functionalization of SINWs for immobilization of selective chemistry is provided in
the context of impact on the analytical performance of SINW-FET sensors. In addition to in vitro examples,

an overview of the progress of use of SINW-FET sensors for ex vivo studies is also presented. This review
concludes with a discussion of the future prospects of SiNW-FET sensors.

© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The integration of nanomaterials into device structures for
biosensing applications has played a central role in the
development of new strategies for signal transduction [1,2].
Due to comparable sizes of biological macromolecules and
nanomaterials (nanotubes, nanowires and nanoparticles), the
combination of nanomaterials with biomolecules offers potential
for development of sensing technologies of molecular size scale
for sensitive detection of biomolecules [2]. Silicon nanowires
(SiNWs) are a class of 1-dimensional (1-D) nanomaterial that was
introduced in 2001 by the Lieber group [3]. Since this time SiINWs
have been described in numerous studies as electrical field-based
sensors that are suitable for a variety of applications that include
detection of ions [4,5], small molecules [6,7], nucleic acids [8],
proteins [9] and the investigation of the electrophysiology

Ulrich Krull is appointed as a Professor of Analytical
Chemistry at the University of Toronto, and holds
the endowed AstraZeneca Chair in Biotechnology.
His research interests are in the areas of biosensor
and diagnostic technologies, and applications to
biotechnology, forensic, clinical and environmental
chemistry. His research work is exploring the use of
luminescent nanoscale materials and microfluidics
technologies to build devices for detection of DNA
and RNA targets. Krull is an editor for Analytica
Chimica Acta, and serves on a number of Scientific
Advisory Boards for industry.

associated with single cells [10-13] and tissues [14,15]. SINWs
can be synthesized as single crystals, and owing to their 1-D
morphology and resulting increase in surface area-to-volume
ratio, they provide improved analytical sensitivity as compared to
planar field effect transistor (FET) devices for chemical and
biosensing [16,17]. Advances in synthetic approaches for fabrica-
tion of SiNWs have allowed for the control of morphology and
doping levels of SiNWs [18], enabling SiNW-FETs for cellular
studies with high spatial and temporal resolution [19]. Addition-
ally, SiNWs offer label-free, real-time and ultrasensitive detection
of biomolecules to sub-fM detection limits [20]. These detection
limits are 2-3 orders of magnitude lower than those that have
been reported with quantum dots and carbon nanotubes for
ensemble compatible measurements [1]. Top-down fabrication
of sensors based on silicon nanostructures offers the practical
advantage of compatibility with the established fabrication
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