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H I G H L I G H T S G R A P H I C A L A B S T R A C T

� Raman model for predicting protein
conformational state class was de-
veloped.

� Formulation and batch variability on
the Raman spectra were investigat-
ed.

� Knowledge about spectral variability
origin necessary for robust model
development.

� External parameter orthogonaliza-
tion is a valid alternative to exhaus-
tive calibration.
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A B S T R A C T

The aim of this work is to build a multivariate calibration (MVC) model from Raman spectra for the
prediction of the protein conformational state class (i.e. native-like or non-native) in different freeze-
dried pharmaceutical formulations of a model protein lactate dehydrogenase (LDH). As this model would
be intended to facilitate and better understand formulation and process development, it should allow
acceptable classification performance despite variations in formulation type and batch. Therefore, it was
attempted to (1) find which factors interfere the Raman spectra, (2) understand them, and (3) make the
MVC model robust for them. A variance analysis within the Raman spectral data space identified
significant spectral background variations among certain formulation types and batches in the studied
samples. Raw material (i.e. LDH) batch variability and the presence of a Maillard reaction in formulations
were the main reasons for this. We demonstrate the successful use of both exhaustive calibration and
external parameter orthogonalization (EPO) pre-processing for making the Raman classification model
more robust for the expected spectral interferences.

ã 2014 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate calibration (MVC) models to predict quality
attributes from spectroscopic (e.g. Near-infrared, Raman) meas-
urements of samples are gaining popularity in the (bio)
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pharmaceutical field [1,2]. Their fast and simple analyses are main
contributors to their success. Because of its high sensitivity for
protein conformation, Raman spectroscopy combined with multi-
variate analysis (MVA) has been proposed for the rapid assessment
of the conformational state in freeze-dried proteins [3]. Such an
MVC model can potentially be useful for speeding up freeze-drying
formulation and process development provided that it enables
accurate classification in different formulations and batches. The
latter will be studied in this paper.

The typical procedure for building an MVC model is obtaining a
number of representative calibration samples and collecting a
spectrum for each of them as well as determining the quality
attribute of interest through a reference method. It is then aimed to
describe the quality attribute (y), expressed as a numerical value or
as a dummy variable related to its class membership, as a function
of the measured spectral signals (X). The partial least squares (PLS)
algorithm that captures efficiently the covariance between X and y
has become the most popular means for developing multivariate
regression models [4]. It is also frequently used as a dimensionality
reduction technique in conjunction with classification algorithms,
such as discriminant analysis (DA) [5]. In this paper a PLS-LDA
classification is considered.

In most cases, only a fraction of the spectral variation in X is
correlated to y. This is the predictive (or correlated) spectral
variation. The net analyte signal (NAS) is defined as the useful part
of the raw signal for the prediction of the quality attribute of
interest. Therefore it theoretically corresponds to 100% predictive
variation, while being orthogonal to the variation of all other
spectral contributors [6,7]. The other variations within the X
variable space constitute of orthogonal (or uncorrelated) spectral
variability [8–10]. This variability may find its origin in all other
spectrally contributing factors, including spectral noise and
systematic variations caused by external factors. The complexity
of this orthogonal variation will largely depend on the type of
spectroscopic technique and the application. For instance, spectral
variations can be the result of varying physical, chemical,
instrumental or process factors. One example is spectral back-
ground variation. In Raman spectra this may arise from non-Raman
effects (such as fluorescence) [11,12], while in diffuse reflectance
NIR spectra light scattering effects of particles and a variable path
length may produce a spectral background.

As PLS is an efficient tool to recognize most of the predictive
variation, it may enable selective and accurate analysis in the
presence of strong interferences, such as in complex matrices or
processes [13]. However, PLS-based calibration models will pick up
any correlation that can be found between X and y, regardless the
origin of the spectral changes. As a result, conditions changing the
orthogonal spectral variation, can make the calibration model lose
its prediction accuracy for the quality attribute when that type of
orthogonal variation was not adequately considered in the
calibration set [14]. This necessitates a calibration set being
representative for future specimens and therefore also requires the
identification of factors contributing to the orthogonal systematic
spectral variation. Calibration samples should be selected in such a
way that not only the variation related to the quality attribute of
interest, but also the expected orthogonal variation, varies over a
range that is expected to be present in future specimens (i.e.
exhaustive calibration) [15]. Composing a representative calibra-
tion set can therefore become a challenging and costly task,
especially if there are many potential sources of spectral variability.
Pre-processing of the spectra in X is another way to diminish the
effects of known external factors hampering the model robustness.
For instance, background corrections (e.g. (linear) interpolation
baseline correction methods, MSC, SNV . . . ) have been applied to
remove the background contributions of the experimentally
obtained Raman spectra prior to interpretation or modeling

[11,12]. Another alternative for making the calibration set
representative is using the calibration base after filtering the
orthogonal space containing the identified harmful variability.
External parameter orthogonalization (EPO) has been used for this
purpose in order to make NIR models more robust [9,16–18].

Robust MVC model development requires thus the knowledge
of the external factors that systematically may influence the
spectral variability [14,19]. In the present study, the first aim was to
identify and understand the factors influencing significantly the
class-orthogonal spectral variability. ‘Formulation type’ was
chosen as the first factor because the model should be able to
predict the conformational state of the proteins in various model
formulations. ‘Batch’ was the second factor because the MVC
model should allow the correct classification of samples from new
production batches. In second part of this paper the robustness of a
PLS-LDA model for these factors was evaluated with external test
sets. Both exhaustive calibration and different pre-processing
methods (with no user intervention – i.e. no baseline subtraction
methods – to exclude a user-dependent bias) were evaluated for
making the PLS-LDA model more robust when predicting the
protein conformational state class in different formulations and
batches.

2. Theory

2.1. External parameter orthogonalization (EPO)

Considering the contributions within the calibration matrix X,
i.e. predictive variation for the analyte k (Xk), orthogonal variation
from all other sources (X-k), and the random spectral variation (E),
Eq. (1) can be written.

X ¼ Xk þ X�k þ E (1)

EPO uses the spectra from a small experimental design to define
a basis of the space spanned by the ‘interfering’ external factor(s),
this way estimating the parasitic subspace X-k. Hereby, the external
factor is varying while the quality attribute of interest stays
constant. In other words, for a set of n samples, n spectra are
acquired at p levels of the external factor. Mean centering each set
of p spectra removes the information of the quality attribute of
interest, hence only the spectral variations due to the external
factor remain. Then the matrix D is composed by merging the p
mean-centered spectra from each of the n samples. Principal
component analysis (PCA) is then applied to D. Retaining only the
first g principal components (PCs), the column vectors of the
matrix of eigenvectors G will represent an orthonormal basis of the
subspace to be removed. Finally, an orthogonal projection is
defined to filter the calibration spectra X in order to obtain the
‘corrected’ ones (X*).

X� ¼ XðI � GGTÞ (2)

where G is a matrix comprising the g first eigenvectors of the
square matrix DTD

h i
, and I is the identity matrix [16].

3. Methods and materials

3.1. Materials and equipment

Two batches of L-lactic dehydrogenase (LDH) from rabbit
muscle – Type II in 'ammonium sulfate were obtained from Sigma–
Aldrich (Saint Louis, MO, USA). Due to a shortage of the type of LDH
used, it was not possible to obtain more LDH raw material batches
from the supplier. From this raw material, different LDH
formulation types were prepared (Table 1). Prior to freeze-drying,
2 mL type I vials (Nipro, Authon-du-Perche, France) were filled
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