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h i g h l i g h t s

• A novel algorithm for probabilistic
peak detection in chromatography is
proposed.

• The methodology follows a Bayesian
inferential approach.

• Peak detection performance does not
depend on the height of peaks.

• Probabilistic peak detection
improves potential subsequent
chemometric analysis.
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a b s t r a c t

We present a novel algorithm for probabilistic peak detection in first-order chromatographic data. Unlike
conventional methods that deliver a binary answer pertaining to the expected presence or absence of a
chromatographic peak, our method calculates the probability of a point being affected by such a peak.
The algorithm makes use of chromatographic information (i.e. the expected width of a single peak and
the standard deviation of baseline noise). As prior information of the existence of a peak in a chromato-
graphic run, we make use of the statistical overlap theory. We formulate an exhaustive set of mutually
exclusive hypotheses concerning presence or absence of different peak configurations. These models are
evaluated by fitting a segment of chromatographic data by least-squares. The evaluation of these compet-
ing hypotheses can be performed as a Bayesian inferential task. We outline the potential advantages of
adopting this approach for peak detection and provide several examples of both improved performance
and increased flexibility afforded by our approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Accurate detection of compound-related signal peaks is critical
to all subsequent analytical tasks and often defines the sensitiv-
ity of the chemical analysis. The detection of peaks constitutes
a fundamental step whether one is calculating the concentration
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of a collection of compounds or using the peak areas for further
inspection via multivariate methods. In this second case, multi-
variate analytical methods often operate over a set of peak areas
associated with target compounds [1–4]. A requisite condition for
these types of analyses is the preliminary detection, isolation, and
integration of signal peaks associated with specific compounds of
interest. In light of this paradigm, the importance of good peak
detection is paramount to proper functioning of all multivariate
analytical techniques performed over peak measurements.

Algorithmic approaches to peak detection have traditionally fol-
lowed two strategies, detection by derivatives and by matched
filter response [5]. Derivative-based peak detection methods make
use of the fact that the first derivative of a peak will have a
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positive-to-negative zero-crossing at the local maxima of a peak [6].
To avoid false positives, a threshold on the slope is often imposed.
By convention, this method smooths the first derivative of the sig-
nal prior to seeking zero-crossings with downward slope, after
which only those zero-crossings whose slope exceeds a certain pre-
determined minimum are retained. Likewise the beginning and end
point of a peak are often defined in terms of the zero-crossings in
the second-order derivative relating to the same signal. Thus a cen-
tral point, width, and fairly precise estimate of peak dimensions
are accessible using derivative-based measurements [7]. Matched
filtering is achieved by the application of a linear filter, which is
designed to detect the presence of a particular pulse event with a
known structure embedded in additive noise [8]. The filter response
function typically exhibits high amplitude in locations correspond-
ing to the presence of a pulse with a specified structure. When
applied to chromatographic data [9,10], assuming a Gaussian peak
shape, we may perform thresholding in the response function to
determine the location of chromatographic peaks. Matched filter
methods are becoming progressively more sophisticated [10–13]
as data complexity increases, whereas derivative-based methods
commonly require increasingly elaborate pre-processing [14,15] to
prevent compounding noise effects [10].

Both of these approaches assert the imposition of a threshold
to classify signal sections as either belonging to a peak or to the
underlying noise present in the chromatographic signal. In other
words, the algorithms deliver a binary decision indicating whether
a given point is affected by the presence or absence of a chromato-
graphic peak. In order to obtain satisfactory performance, users
are required to tune a collection of parameters. The selection of an
optimal threshold for different detection approaches has been thor-
oughly discussed [6,12,16–19], with no general consensus being
reached. Threshold-based methods may yield sub-optimal results
due to the general functional limitations inherent to a threshold
operation. If a binary decision is implicit to the method, then errors
in classification are unavoidable. For peak detection this means vital
information may be lost. A probabilistic assertion does not nec-
essarily discard low probability peaks, at least not in initial peak
detection performed on a single chromatogram.

We propose an alternate data processing paradigm for proba-
bilistic peak detection rather than a binary one. Unlike traditional
methods, the peak presence probability is calculated over each
point in a chromatographic signal using parameters that are
directly related to the nature of the peaks expected in the chro-
matographic system. All functionality of threshold based methods
can be achieved within a probabilistic context simply by imposing
a threshold on the minimum acceptable posterior probability of
observing a peak. Rather than employing an implicit binary deci-
sion, our method introduces a probability of peak influence for a
specific point. This probability is calculated and potentially prop-
agated through subsequent processing steps. Our method avoids
prematurely eliminating candidate features in chromatographic
data prior to multivariate analysis. Additionally, the application of
Bayes’ Rule for peak detection is complemented by the statistical
theory of component overlap developed by Davis and Giddings [20].
We demonstrate that the method presented in this paper consti-
tutes a novel way of updating the probability of whether a peak
is occupying a chromatographic space. Starting with a collection
of prior probabilities as derived by Davis and Giddings, we arrive
at posterior probabilities via Bayes’ Rule once the observation of
chromatographic data is taken into account.

The idea of using Bayesian inference in analytical chemistry is
not new [21]. The use of evidential reasoning has made an impact
in domains such as genomics, proteomics, or metabolomics, which
are largely dependent on analytical chemistry as an underlying
source of data. These domains usually apply Bayesian method-
ology at the level of feature alignment or multivariate analysis

Fig. 1. Relevant window centered at point i.

[22,23,19]. The application of Bayesian statistics directly in the
chromatographic field is more frequently limited to experimental
calibration, signal alignment, compound concentration estimation,
and deconvolution [24,25]. Existing research has also established
the usefulness of a Bayesian inferential model for resolving overlap-
ping peaks in a modulated signal [26]. The examination of post-fit
residuals as a method of characterizing peak regions has also been
used in multidimensional data [17] and for the estimation of the
probability that a data point belongs to the baseline [27]. We
present a direct implementation of Bayes’ Rule to peak detection
for a single first-order chromatogram.

2. Method

The fundamental task in peak detection is the identification of
compound related peaks in chromatographic data, including their
centers and tails, such that accurate qualitative and quantitative
inferences may be drawn from the chromatographic analysis. To
this end our method evaluates, for each point in the chromatogram,
the possibility that such point is affected by a chromatographic
peak. Operationally, the user is expected to provide two param-
eters with approximate accuracy. The first parameter, �peak, is the
ideal width of a peak in the retention time domain for the spe-
cific chromatographic system. Using a static peak width assumes
peak width stability over the course of the chromatographic run (as
can be expected from gradient chromatography). This parameter is
then converted to the dimensionless data point scale. It may be esti-
mated from internal standard or calibration runs performed on the
instrument. The second parameter, ��, is the standard deviation of
the baseline noise exhibited by a specific system. This parameter
can easily be obtained from a blank chromatographic run.

An operational window is defined as described in Fig. 1. The
width of the window is 8�peak + 1, and contains 2n + 1 points. With
this width, a peak with a width defined by �peak can be contained
with n/2 points on either side of a central point i, Hence n is approx-
imately equal to 4�peak.

We shall refer to this n + 1 point window as our inner window,
symmetrically centered around point i. An additional n/2 points
before and after the inner window are referred to as the outer win-
dow. We include the outer window in order to include peak center
positions outside the inner window. When a peak center occurs
outside the outer window it can not affect points inside the inner
window since the window size is determined by the peak width.

We aim to calculate the probability that the point i is affected
by the presence of a chromatographic peak. Such a peak neces-
sarily affects points in the inner window but may also influence
points in the outer window. This operation is performed iteratively
such that every point in the chromatogram occupies the i position
before subsequently shifting the window one point in the reten-
tion time interval. We define the following competing hypotheses
(in reference to point i) as per the conventional Bayesian inferential
formulation [28,29].
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