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• A  new  MCR  method  based  on  particle
swarm  optimization  (PSO)  is devel-
oped.

• Multi-component  simulated  GC–MS
and  HPLC–DAD  data  are  successfully
resolved.

• Performance  of  MCR-PSO  algorithm
is compared  with  MCR-ALS  and  MCR-
FMIN.

• MCR-PSO  is  used  for  high-throughput
analysis  of  real  chromatographic
data.
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a  b  s  t  r  a  c  t

Multivariate  curve  resolution-particle  swarm  optimization  (MCR-PSO)  algorithm  is proposed  to exploit
pure chromatographic  and  spectroscopic  information  from  multi-component  hyphenated  chromato-
graphic  signals.  This  new  MCR  method  is  based  on  rotation  of  mathematically  unique  PCA solutions  into
the  chemically  meaningful  MCR  solutions.  To  obtain  a  proper  rotation  matrix,  an  objective  function  based
on non-fulfillment  of constraints  is  defined  and  is  optimized  using  particle  swarm  optimization  (PSO)
algorithm.  Initial  values  of  rotation  matrix  are  calculated  using  local  rank  analysis  and  heuristic  evolving
latent  projection  (HELP)  method.  The  ability  of  MCR-PSO  in  resolving  the  chromatographic  data  is eval-
uated  using  simulated  gas  chromatography–mass  spectrometry  (GC–MS)  and  high-performance  liquid
chromatography–diode  array  detection  (HPLC–DAD)  data.  To  present  a comprehensive  study,  different
number  of  components  and  various  levels  of  noise  under  proper  constraints  of  non-negativity,  unimodal-
ity  and  spectral  normalization  are  considered.  Calculation  of  the  extent  of  rotational  ambiguity  in  MCR
solutions  for  different  chromatographic  systems  using  MCR-BANDS  method  showed  that  MCR-PSO  solu-
tions  are  always  in  the  range  of  feasible  solutions  like  true  solutions.  In addition,  the  performance  of
MCR-PSO  is  compared  with  other  popular  MCR  methods  of  multivariate  curve  resolution-objective  func-
tion minimization  (MCR-FMIN)  and  multivariate  curve  resolution-alternating  least  squares  (MCR-ALS).
The  results  showed  that  MCR-PSO  solutions  are  rather  similar  or better  (in  some  cases)  than  other  MCR
methods  in  terms  of  statistical  parameters.  Finally  MCR-PSO  is  successfully  applied  in  the  resolution  of
real GC–MS  data.  It  should  be pointed  out  that  in  addition  to multivariate  resolution  of  hyphenated  chro-
matographic  signals,  MCR-PSO  algorithm  can  be  straightforwardly  applied  to  other  types  of  separation,
spectroscopic  and  electrochemical  data.
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1. Introduction

In recent decades, hyphenated chromatographic techniques,
such as gas chromatography–mass spectrometry (GC–MS),
high-performance liquid chromatography–diode array detection
(HPLC–DAD) and liquid chromatography–mass spectrometry
(LC–MS) have been frequently used in the analysis of complex
samples [1–10]. Analysis of complex samples has been a great chal-
lenge in analytical chemistry. Though many analytical methods
have been developed, most of them are not feasible to be used for
analysis of real samples without tedious separation and concentra-
tion operations. Indeed, hyphenated chromatographic techniques
have been revolutionized the routines in analytical chemistry
for the detection, quantification and identification of chemical
constituents [5,7,9].  The chromatographic profiles describe the
chemical composition of a sample and provide a unique identi-
fication tool. With the hyphenated instruments, a huge amount
of data can be produced. However, the effective separation of the
components in a sample is the prerequisite for qualitative and
quantitative analysis. For most of the cases, to obtain a satisfac-
tory separation, optimized experimental conditions should be
employed which is usually laborious and time-consuming. There-
fore, in spite of advance hyphenated chromatographic systems, the
incomplete separation issues still exist in the analysis of complex
samples [11–13].  The incomplete separation directly reflects the
lack of selectivity in the chromatographic systems. Therefore,
exploiting pure chromatographic and spectroscopic information of
target compounds in the presence of interferences is very difficult.
As a consequence, reliable qualitative and quantitative information
cannot be obtained.

Great efforts, therefore, have been made by chemometricians
to extract the chemical information from hyphenated chromato-
graphic signals [2,11–17]. Fortunately, in recent decade, different
chemometric resolution methods have been proposed by differ-
ent research groups to compensate the lack of selectivity problem
in chromatographic systems and to obtain pure chromatographic
and spectroscopic profiles of target compounds in the presence of
interferences (which is called second-order advantage) [18–20].

Multivariate curve resolution (MCR) [16,19–21] techniques are
a family of chemometric methods based on bilinear model assump-
tion which attempt doing the multivariate resolution of mixed
chromatographic signals into the contribution of pure compo-
nents by means of mathematical tools but without their physical
separation. The main assumption of MCR  bilinear model is that
multivariate chromatographic signals are a linear sum of the pure
individual contribution of the different chemical components in the
system [14,21].

Despite of the theoretical ability of MCR  bilinear models, MCR
methods have sometimes experienced difficulties in yielding suf-
ficient resolution performances due to the presence of rotational
ambiguity [22–24].  For example multivariate curve resolution-
alternating least squares (MCR-ALS) [25–27] as one of the most
popular MCR  methods, sometimes reaches the suboptimal local
minimum due to its linear objective function [28–31].  One poten-
tial solution for this problem is to use more powerful optimization
algorithms with a more robust objective function, which directly
reflects the constraints fulfillment [32,33]. Particle swarm opti-
mization (PSO) [34] is one of these methods.

PSO is a population-based evolutionary technique which
searches for optima by updating generations [35]. A remarkable
advantage of PSO compared to other evolutionary techniques is
that its algorithm is conceptually much simpler and demands lower
computational costs. Additionally, it contains few parameters to be
adjusted. In the literature, there is only one report on the use of
particle swarm optimization (PSO) algorithm for the multivariate
resolution purposes [28]. However, in this article, PSO was used as

a method to estimate the initial values of concentration or spectral
profiles for resolution of complex near infrared (NIR) data and the
potential of PSO to obtain meaningful components profiles has not
been used in this work.

In the present contribution, MCR-PSO algorithm is developed
using a newly developed objective function by Tauler [32] based
on non-fulfillment of constraints. The performance of this novel
algorithm is tested using simulated GC–MS and HPLC–DAD data
with different number of components and different levels of
noise. In addition, the performance of this algorithm was  com-
pared with MCR-ALS and multivariate curve resolution-objective
function minimization (MCR-FMIN) which is based on a similar
objective function but it uses local search optimization algorithms
such as Quasi-Newton (QN) and Nelder–Mead simplex (NM) algo-
rithms [32,33]. Finally, to test the reliability of MCR-PSO in real
cases, a real GC–MS data set was analyzed by this algorithm.

The resolution results were satisfactory; therefore, MCR-PSO
can be applied for high-throughput analysis of complex multi-
component hyphenated chromatographic signals. As a side point,
with this method, multi-component samples may  be analyzed in a
very fast elution way without considering the separation effect of
the components.

2. Theory

2.1. MCR bilinear model

The data obtained from hyphenated chromatographic mea-
surements such as GC–MS, LC–DAD and LC–MS can be arranged
in a two-way data matrix (D) with elution time points as rows
and mass-to-charge ratio (m/z) as columns for GC–MS/LC–MS and
wavelengths (�) for LC–DAD. The two-way data matrix D can be
decomposed using the PCA (Eq. (1))  and MCR  (Eq. (2)) bilinear
models:

D = UVT + EPCA = DPCA + EPCA (1)

D = CST + EMCR = DMCR + EMCR (2)

where DPCA and DMCR are the reconstructed data matrices using PCA
and MCR, respectively. U and C are the row vector matrices and VT

and ST are the column vector matrices obtained by PCA and MCR,
respectively. EPCA and EMCR are the residual matrices with the data
variance unexplained by UVT and CST, respectively. The dimensions
of matrices are: D (I × J), C and U (I × N), ST and VT (N × J), and E
(I × J); I is the number of elution time points in chromatographic
direction of the GC–MS/LC–DAD/LC–MS data, J is the number of
spectral variables (e.g. m/z or �), and N is the number of chemical
components.

Due to the very restrictive constraints applied during the deter-
mination of the PCA scores and loadings, PCA decomposition is
unique [36]. On the other side, MCR  decomposition is not unique
because the constraints imposed during the determination of factor
matrices are less restrictive and allow for an undetermined number
of equivalent solutions with the same fitting values. Nevertheless,
MCR  solutions have physical meaning because they are based on
natural constraints fulfilled by the true sources of data variation but,
PCA solutions lack this physical meaning [21]. Therefore, the good
mathematical PCA solutions can be transformed to good physically
MCR ones using an appropriate rotation matrix R under application
of proper constraints. This may  be stated by the following equation
[21]:

DPCA = UVT = URR−1VT ⇒ CST = DMCR (3)

It is important to note that due to experimental noise, going
from PCA to MCR  solutions is not always an easy trivial task. This
problem may  incorporate some noise into PCA and MCR  solutions
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