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� Chemometric  preprocessing  not
needed  when  using  rational
functions.

� Building  parsimonious  models  in  an
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a  b  s  t  r  a  c  t

This  paper  presents  new  methods  for  multivariate  calibration.  A unique  aspect  is  that  this  approach  uses
rational  functions  with  either  Least  Absolute  Shrinkage  and  Selection  Operator  (LASSO)  or  Elastic  Net
(ENET),  and  builds  parsimonious  models  in  an automated  way  via  cross-validation.  Rational  function
modeling  provides  robustness,  as  will  be  briefly  demonstrated.  Interestingly,  rational  function  models
are  also  flexible,  in that  occasionally  they  are  reduced  to ordinary  linear  models  based  on  cross-validation.
Thus,  model  complexity  is not  forced  to  take  the  form  of rational  functions.

Additional  benefits  arise  from  the  use of  LASSO  and  ENET.  While  LASSO  uses  only  �1 norm  on  regression
coefficients,  ENET  combines  the  best of both  worlds  by using  �1 and  �2 norms.  The  former  (�1) provides
variable  selection  while  the  latter  (�2)  handles  collinearity  via  shrinkage  of regression  coefficients.  Ratio-
nal  functions  are  highly  collinear  if full  rank  is used  and,  thus,  not  necessarily  robust  unless  either  �1 or
�2 norm  is used  on  the  regression  coefficients.  The  use  of  �1 norm  allows  for a more  parsimonious  model
that  can  potentially  be  more  robust.  This  is contrary  to the  use of  a broadband  spectrum  that  is likely  to be
contaminated  at some  point  in  the  future  by  unknown  spectral  interferences.  The  real  benefits  seem  to
originate  from  the  combination  of  rational  functions  and  ENET.  Note  that LASSO  solutions  form  a subset
of  ENET  solutions  and  are thus  included  in  ENET.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The mainstream approach to multivariate calibration is to use
a suitable means of one or two given spectral preprocessing
techniques followed by an ordinary regression technique solving
the multivariate calibration given by y = ˇ0 + X� where y is our
response variable and X consists of measured spectral data. There is
a real plethora of regression techniques, and most widely used are
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Partial Least Squares (PLS) [1–4] in chemometrics and ridge regres-
sion [5] in statistics. These techniques use �2 norm on regression
coefficients in order to take into account the collinearity in data. To
be more accurate, PLS performs regression in a truncated basis [6]
that indirectly leads to a shrinkage of regression coefficients in a �2
norm sense (compared to Ordinary Least Squares (OLS)).

Another common approach is to use techniques that carry out
variable selection in order to robustify or simplify models. Among
these techniques, we refer here to Least Absolute Shrinkage and
Selection Operator (LASSO) [7].  This approach uses an �1 norm on
regression coefficients in order to simplify models. Recently, a new
approach called Elastic Net (ENET) [8] has been developed. This
method is interesting in the sense that it combines both �1 and
�2 norms. There is also an excellent paper from Kalivas with an
overview on �1 and �2 norms and their applications to multivariate
calibration and model maintenance [9].

A different approach has recently been developed by Taavit-
sainen, who has applied rational functions together with PLS and
ridge regression [10]. This kind of rational function modeling adds
flexibility in modeling by taking nonlinearities into account.

In this work, rational functions are combined with ENET, LASSO,
ridge, and PLS, with a particular focus on the proposed rational
function LASSO and ENET methods. In practical terms, the aim of
this work is to illustrate and demonstrate the potential benefits of
these new methods to real applications in multivariate calibration.
Firstly, the robustness and flexibility of rational function model-
ing will be shown, and how rational functions can even replace
the Standard Normal Variate (SNV) preprocessing [11] that is rou-
tinely used for correcting multiplicative spectral interferences and
other optical path-length (OPL) changes. Secondly, we  will demon-
strate the added value of rational function LASSO (RF-LASSO) and
ENET (RF-ENET) approaches and, in particular, how RF-ENET pro-
vides a full continuum of feasible solutions that make a balanced
and flexible use of both parsimony (variable selection with �1
regularization) and smoothness (handling collinearity with �2 reg-
ularization).

2. Theory

2.1. Ridge regression (RR), Least Absolute Shrinkage and Selection
Operator (LASSO) and Elastic Net (ENET)

In 1970, Hoerl and Kennard introduced Ridge regression [5],
which uses a regularization parameter �2 to control the infla-
tion and general instability of least squares estimates. By doing
this, regression coefficient estimates in ridge regression tend to be
smoother and smaller in size, in addition to the fact that prediction
estimates ŷ becoming more precise and stable. This is done by using
an �2-penalty on regression coefficients.

ˆ̌ Ridge = argmin
ˇ

‖y − Xˇ‖2
2 + �2‖ˇ‖2

2 (1)
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As well-known, the estimates of regression coefficients ˆ̌
 in

ridge regression are computed as follows.

ˆ̌ Ridge = (XTX + �2I)−1XTy (2)

The ridge regression usually provides smoothness to regression
coefficients and takes care of any collinearity in data. It does not
perform any variable selection, but rather uses all variables. On
the other hand, Least Absolute Shrinkage and Selection Operator

(LASSO) is used precisely for variable selection. LASSO uses an �1-
penalty and continuously shrinks the smallest estimated regression
coefficients towards zero. The number of zero-valued regression
coefficients increases as a function of the regularization parameter
�1.

ˆ̌ Lasso = argmin
ˇ
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2 + �1‖ˇ‖1 (3)
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Various authors have listed a few issues in LASSO (Zou and

Hastie [8],  Zou and Zhang [12], Meinshausen and Bühlmann [13],
and Zhao and Yu [14]). These shortcomings suggest that there may
be some conditions in which LASSO becomes an inappropriate
method for variable selection. For instance, in cases where there
are more predictors than samples, LASSO is not well-defined unless
the bound on the �1-norm of regression coefficients is smaller than
a certain value as stated by Zou and Hastie. Other conditions are
related to collinearity and pairwise correlations between predic-
tors. It is for these reasons that Zou and Hastie have introduced
Elastic Net (ENET) [8],  combining both �1- and �2-penalties, and,
by doing so, they try to fix the above shortcomings. The underlying
(naïve) ENET model is given as follows.

ˆ̌ Naïve elastic net = argmin
ˇ

‖y − Xˇ‖2
2 + �2‖ˇ‖2

2 + �1‖ˇ‖1 (4)

Based on empirical evidence, Zou and Hastie [8] call this a naïve
ENET because it does not perform satisfactorily unless the solution
is very close to either ridge regression or LASSO. This is due to the
double shrinkage of applying first �2-penalty and then �1-penalty.
In order to remedy this shortcoming of the naïve ENET, Zou and
Hastie proposed a correction (cf. Eq. (7))  for the regression coeffi-
cient estimates. The solution that has been used in this work follows
Eqs. (5)–(7)).  Essentially, Eqs. (4) and(5) are the same. The solution
uses augmented matrices y* and X*.

ˆ̌ ∗ = argmin
ˇ∗

‖y∗ − X∗ˇ∗‖2
2 + �1√

1 + �2

‖ˇ∗‖1 (5)

where

y∗
(I+J)×1 =

(
y

0

)

and

X∗
(I+J)×J = 1√

1 + �2

(
X√
�2IJ

)

This can be also expressed as an equivalent LASSO problem using
augmented matrices as stated by Clemmensen et al. [15]

1√
1 + �2

(
XT X +

√
�2IT

J IJ

)
ˆ̌ ∗ = XT y (6)

The correction of regression coefficient estimates is given by

ˆ̌ Elastic net =
√

1 + �2
ˆ̌ ∗

(7)

2.2. Ordinary Least Squares (OLS) and Partial Least Squares (PLS)
regression

For Ordinary Least Squares (OLS), we refer to the paper by Hoerl
and Kennard [5].  In addition, there is an excellent paper from Geladi
and Kowalski [1] comparing (ordinary) Multiple Linear Regression
(MLR, i.e. OLS), Principal Component Regression (PCR), and Partial
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