
Analytica Chimica Acta 801 (2013) 43– 47

Contents lists available at ScienceDirect

Analytica  Chimica  Acta

j ourna l ho mepage: www.elsev ier .com/ locate /aca

A  novel  algorithm  for  linear  multivariate  calibration  based  on  the
mixed  model  of  samples

Xuemei  Wua,b,  Zhiqiang  Liuc,  Hua  Lia,∗

a Institute of Analytical Science, School of Chemistry and Material Science, Northwest University, Xi’an 710069, PR China
b Department of Chemistry & Chemical Engineering, Xi’an University of Arts and Science, Xi’an 710065, PR China
c Xi’an Research Institute of High-tech, Xi’an 710025, PR China

h  i  g  h  l  i  g  h  t  s

• A  novel  algorithm  is  proposed  for  lin-
ear multivariate  calibration.

• The  algorithm  shows  good  perfor-
mance of  anti-background  interfer-
ence.

• The  algorithm  shows  good  robust-
ness.
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a  b  s  t  r  a  c  t

We  present  a novel  algorithm  for  linear  multivariate  calibration  that  can generate  good  prediction  results.
This  is accomplished  by  the idea  of  that  testing  samples  are  mixed  by  the  calibration  samples  in  proper
proportion.  The  algorithm  is based  on  the mixed  model  of  samples  and is  therefore  called  MMS  algo-
rithm.  With  both  theoretical  support  and  analysis  of  two  data  sets,  it is demonstrated  that  MMS algorithm
produces  lower  prediction  errors  than  partial  least  squares  (PLS2)  model,  has  similar  prediction  perfor-
mance  to  PLS1.  In the  anti-interference  test  of  background,  MMS  algorithm  performs  better  than  PLS2.
At the  condition  of the  lack  of  some  component  information,  MMS  algorithm  shows  better  robustness
than  PLS2.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate calibration methods have come into routine use
in a variety of applications in which no single measurement vari-
able has sufficient selectivity to allow a univariate relationship to
be established with analyte concentration [1–4]. At present, PLS
algorithm has gained acceptance in multivariate calibration, as evi-
denced by the increased number of applications and reviews [3–9].
In PLS regression, the multitude of spectral dimensions is reduced
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to a few latent variables (LVs), or factors. These factors are selected
to maximize indirectly the correlation between spectral variance
and analyte concentration [1,9,10]. It solved the problem of multi-
collinearity, and improved the performance of multivariate calibra-
tion. However, PLS has some disadvantages: (1) For PLS, it is neces-
sary to find the best number of LVs, which normally is performed by
using cross-validation, based on the determination of the minimum
prediction error [11]. The latent variables are abstract mathemat-
ical factors, with usually little or no physical or chemical meaning
[12]. (2) Data preprocessing is very important for PLS regression,
but no one preprocessing method is adaptive for all kinds of mea-
surement data. Many preprocessing methods are used to enhance
prediction-model performance [13], and different preprocessing
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Fig. 1. The mixed model of testing sample: testing sample can be described as mixtures of the calibration samples in proper proportion.

method may  lead to different results. It is difficult to decide which
preprocessing method should be chosen for different measurement
data. (3) In PLS regression, measurement data (absorbency matrix)
is defined as independent variable, and contents data matrix is
defined as dependent variable. When the LVs is calculated, it is
necessary to consider both the matrix of independent variables and
the matrix of dependent variables. During this process, the lack of
component information may  affect the final results.

In this paper, we proposed an original algorithm MMS  for lin-
ear multivariate calibration which is based on the mixed model
of samples. MMS  has different principle from PLS algorithms, and
performs better than PLS in many common situations.

2. Theory

Frequently, one can make certain assumptions of linearity about
the spectral measurement process. First, one assumes that the spec-
trum observed is a linear combination of what we shall call “pure”
spectra, one for each species present in the sample. Second, one
assumes that the spectral response of the species of interest is
linearly proportional to its concentration [14].

For the mixed model, it is assumed that testing sample can be
described as mixtures of the calibration samples in proper propor-
tion. The mixed model of testing sample can be shown in Fig. 1.

Where Si (i = 1,2,3,. . .,p) represents the ith calibration sample,
p is the number of the calibration samples. ai (i = 1,2,3,. . .,p) rep-
resents the mixed proportion of Si (i = 1,2,3,. . .,p). The value of ai
is equal to the ratio of the volume of Si to the volume of testing
sample. Obviously,

p∑
i=1

ai = 1 (1)

Eq. (1) can be represented in matrix form

p∑
i=1

ai = aTb = 1 (2)

where a = [a1,a2,. . .,ap]T, superscript T means matrix transpose. b is
an p × 1 matrix, and b = [1,1,. . .,1]T.

According to the mixed process, the concentration values yu of
testing samples can be represented as

yu = aTY (3)

where Y is the p × N matrix of concentration values for the calibra-
tion samples, and N is the number of the pure components. Y is
expressed as

Y =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 · · · c1N

c21
. . .

. . .
...

...
. . .

. . .
...

cp1 · · · · · · cpN

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

where cij (i = 1,2,3,. . .,p; j = 1,2,3,. . .,N) represents the jth concentra-
tion of the ith calibration sample.

In order to ensure that any testing sample can be mixed by the
calibration samples, Y should be full rank (the rank is N).

For the calibration samples, the spectra can be expressed as

X = YK + e (5)

where X is an p × M matrix of the measured intensities (absorbance
values in the case of Beer Lambert law) for the M variables
(e.g.,wavelengths) and the p samples, K is the N × M matrix of the
pure component signals (e.g., spectra) at unit concentration, and e
is the error matrix.

For a sample of testing set, the relation between spectrum xu
and concentration yu is

xu = yuK + eu (6)

where eu is a 1 × M measuring error matrix. yu is a 1 × N matrix of
concentration values for the testing samples.
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