
Analytica Chimica Acta 704 (2011) 1– 15

Contents lists available at ScienceDirect

Analytica  Chimica  Acta

j ourna l ho me page: www.elsev ier .com/ locate /aca

Fast  and  simple  methods  for  the  optimization  of  kurtosis  used  as  a  projection
pursuit  index

S.  Hou,  P.D.  Wentzell ∗

Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4J3 Canada

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 25 April 2011
Received in revised form 21 July 2011
Accepted 4 August 2011
Available online 11 August 2011

Keywords:
Optimization
Quasi-power method
Univariate kurtosis
Multivariate kurtosis
Projection pursuit
Independent component analysis

a  b  s  t  r  a  c  t

As  a powerful  method  for exploratory  data  analysis,  projection  pursuit  (PP)  often  outperforms  principal
component  analysis  (PCA)  to  discover  important  data  structure.  PP  was  proposed  in  1970s  but  has  not
been  widely  used  in  chemistry  largely  because  of the difficulty  in  the optimization  of projection  indices.
In  this  work,  new  algorithms,  referred  as  “quasi-power  methods”,  are  proposed  to  optimize  kurtosis  as a
projection  index.  The  new  algorithms  are  simple,  fast,  and  stable,  which  makes  the  search  for  the  global
optimum  more  efficient  in  the  presence  of multiple  local  optima.  Maximization  of  kurtosis  is  helpful
in  the  detection  of  outliers,  while  minimization  tends  to reveal  clusters  in the  data,  so  the  ability  to
search  separately  for  the  maximum  and minimum  of kurtosis  is desirable.  The  proposed  algorithms  can
search for  either  with  only  minor  changes.  Unlike  other  methods,  no optimization  of  step  size  is  required
and  sphering  or whitening  of  the  data  is not  necessary.  Both  univariate  and  multivariate  kurtosis  can
be optimized  by  the  proposed  algorithms.  The  performance  of  the  algorithms  is evaluated  using three
simulated  data sets  and  its  utility  is demonstrated  with  three  experimental  data  sets relevant  to  analytical
chemistry.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Exploratory data analysis and classification methods have
always been important tools of multivariate data analysis in chem-
istry. The application of these methods has expanded in recent
years due to, among other things, an increased emphasis on
high throughput biological analysis, where researchers are often
interested in differentiating among different biological states of
organisms. Discriminant methods are widely used for classification
purposes in these applications, but because the number of vari-
ables is typically high and the number of samples is limited, careful
validation is required to ensure that there is a meaningful separa-
tion of classes. On the other hand, exploratory methods, such as
principal components analysis (PCA) or hierarchical cluster analy-
sis (HCA), are unsupervised, so any class separation that is observed
is likely to be real. PCA has dominated as a method to visualize high-
dimensional data in lower dimensional spaces, but suffers from the
drawback that it is based on maximizing the variance along the
projection vectors, which is not always the best way  to separate
classes. This problem can be circumvented through the use of pro-
jection pursuit (PP) analysis, which uses different criteria to identify
projection vectors. While there are examples of the application of
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this technique to chemistry (see for example Refs. [1–3]), it is not
nearly as widely applied as PCA and HCA, probably because the
algorithms are fairly complex and not readily accessible in many
standard packages. In this work, algorithms are presented to carry
out PP analysis that are straightforward and efficient, allowing this
important tool to be readily adapted to any application.

The term “projection pursuit” was  firstly coined by Friedman
and Tukey [4],  but the concept of PP can be tracked back to the work
of Kruskal [5,6] who  proposed the term “index of condensation”. PP
generally refers to an unsupervised technique for exploratory data
analysis, but some researchers have used this term for discriminant
analysis [7].  The primary purpose of PP is to look for “interesting”
projections in a low-dimensional subspace that can reveal the nat-
ural structure of the data. The notion of “interestingness” may  have
different interpretations in different applications, but in the present
context, interesting projections are those where the data projected
in the low dimensional space can reveal clusters or outliers.

Because the description of PP does not unambiguously define
how to determine what is interesting, any linear projection method,
including PCA, could be regarded as a special case of PP. PCA is per-
haps the most widely used method in exploratory data analysis, but
in many cases PP can outperform PCA. This is because the direc-
tions of the greatest variance in the data set (determined by PCA)
do not necessarily show the most useful information, but PP may
find directions that reveal “interesting” data structure.

An objective function that characterizes the “interestingness”
is called a “projection index”. In the literature, various projection
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indices have been developed, leading to many PP variants. The orig-
inal projection index was proposed by Friedman and Tukey [4],  but
this was followed by proposals for other projection indices in the
literature [8–15]. Most of the projection indices are designed to
measure the non-normality of a distribution. Deviations from nor-
mality in the projected data are considered interesting because, for
multivariate data, the observed variables are often the linear com-
binations of a small number of latent variables. By the central limit
theorem, even if the latent variables reveal important elements of
data structure, such as clusters or outliers, the observed variables
often cannot directly disclose meaningful information because they
tend towards normality. The latent variables that reveal useful
information deviate from a normal distribution, so projections that
deviate strongly from normality may  uncover this structure.

In theory, any function that relates directly to the normality of
a distribution can be used as a projection index, but a good index
should be a simple measure and easy to optimize. Several functions
have been used, with entropy and kurtosis being the most famil-
iar. Kurtosis was  one of the early functions proposed [8] and has
the advantage of conceptual simplicity. Peña and Prieto showed
that maximization of the kurtosis can be used to detect outliers
[16], although this is not always effective and other methods may
be preferred [17]. On the other hand, projections with bimodal-
ity tend to have a small kurtosis, and minimization of kurtosis can
therefore be used as a criterion to search for clusters [15]. Kurtosis
is also used to measure the non-normality in independent compo-
nent analysis (ICA) [18,19],  which is a technique closely related to
PP. In univariate statistics, a normal distribution has a kurtosis of 3.
A super-gaussian (peaked, or leptokurtic) distribution has a larger
kurtosis, while a sub-gausssian (flat, or platykurtic) distribution has
a smaller kurtosis. Either maximization or minimization of kurtosis
can give useful information. Kurtosis satisfies the condition of the
Class III objection functions set by Huber [8] for good projection
indices; that is, scaling and translation do not change the values
of the functions. One more appealing property of kurtosis is that
the univariate case can be easily generalized to multivariate kurto-
sis, which not only has the useful properties of univariate kurtosis,
but also is independent of the choice of the basis for a subspace.
Therefore, kurtosis appears to be an ideal statistic for the projection
index.

The projection index acts as the heart of PP, but its utility
is mostly dependent on computational aspects. Optimization of
the projection index, which greatly determines whether a projec-
tion index is successful, plays a crucial role in PP. Because of the
quartic nature of kurtosis, optimization is a difficult problem. Kur-
tosis can have multiple local maxima and minima, and commonly
used optimization algorithms cannot guarantee the global extrema.
Therefore, it is generally necessary to start from different initial
guesses to search for the global optimum, or better local optima,
and therefore the speed of an optimization algorithm is critical.
Gradient descent or ascent methods are ubiquitous in optimization
problems, but gradient methods have the well-known shortcom-
ing of slow convergence rates and the choice of optimal step size is
difficult. Gradient methods have been used for the optimization of
kurtosis [20,21], but other algorithms have also been developed in
the literature. Peña and Prieto [15] proposed iterative methods for
optimization of kurtosis by applying a modified Newton’s method,
which is complicated, or by solving first-order optimality condi-
tions, similar to one method proposed in this work (differences are
noted in the Supplementary Information). Croux’s algorithm [22]
has also been used for the optimization of kurtosis as a projection
index [3]. This algorithm calculates the objective function for many
projections based on the sample space and works well when the
number of variables is relatively small, but will perform poorly if the
dimensionality of the data becomes too high. Hyvärinen et al. pro-
posed a fast fixed-point algorithm to optimize the kurtosis [19,23]

based on sphered data. Sphering, which differs from autoscaling,
is a transformation that ensures the data have unit variance when
projected in any direction [24]. This algorithm is one of the most
widely used because of its fast convergence. It has several variants
[25–29] and can be viewed to be a continuum between gradient
methods and Newton’s method. As with other such methods, the
determination of the optimal step size for the fixed-point algorithm
is computationally involved, but this has been described [27,28].

In the present work, new algorithms, referred as “quasi-power
methods”, to optimize kurtosis are proposed. The algorithms use
the well-known conclusion in calculus that if all the partial deriva-
tives are zeros at a point, the point may  be a maximum or a
minimum. By setting all the derivatives of kurtosis to be zero
followed by re-arrangements, equations emerge that allow the
principle of the power method and its variants (used to solve
eigenvalue problems) to be employed. Because the algorithms are
developed from the perspective of the power method instead of
gradient methods, they are simple, fast, and stable. Commonly
required preprocessing steps, such as sphering or whitening of
the data, are not necessary. The algorithms can search for max-
ima  or minima according to user’s requirements, without the need
to optimize step size, and they can be used for both univariate and
multivariate kurtosis with little modification.

2. Theory

2.1. Univariate kurtosis

For univariate data, the sample kurtosis (K) is defined as

K =
1/n

n∑
i=1

(zi − z̄)4

(
1/n

n∑
i=1

(zi − z̄)2

)2
(1)

where n is the number of samples, zi is the individual sample
value, and z̄ is the sample mean. The numerator is the fourth cen-
tral moment and denominator is the square of the second central
moment or the biased sample variance (as opposed to the unbi-
ased variance which has n−1 degree of freedom). For the purpose
of optimization, the offset of “−3” that is included in some defini-
tions of kurtosis to give the normal distribution a kurtosis of zero
is not included. The current definition ensures that the kurtosis is
always positive.

For multivariate data, if there are n samples measured on p vari-
ables, the entire data can be arranged in a n × p matrix:
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Each column of X represents a set of samples measured on a sin-
gle variable and each row contains the measurements on different
variables for a single sample, denoted by the notation xT

i
, where the

subscript “i” is the sample index. In the following, the data matrix
X is assumed to have been column mean-centered to simplify the
derivation. PP tries to search for a unit length projection vector

v =
[

v1 v2 · · · vp

]T
such that, when the p-dimensional data X

are projected onto this projection vector, the kurtosis of the pro-
jected data reaches a maximum or a minimum. If a projected data
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