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a  b  s  t  r  a  c  t

In  many  metabolomics  applications  there  is a  need  to compare  metabolite  levels  between  different  con-
ditions,  e.g.,  case  versus  control.  There  exist  many  statistical  methods  to  perform  such  comparisons  but
only  few  of  these  explicitly  take  into  account  the  fact  that  metabolites  are  connected  in  pathways  or  mod-
ules.  Such  a priori  information  on  pathway  structure  can  alleviate  problems  in,  e.g.,  testing  on individual
metabolite  level.  In  gene-expression  analysis,  Goeman’s  global  test  is used  to  this  extent  to  determine
whether  a  group  of  genes  has  a different  expression  pattern  under  changed  conditions.  We  examined  if
this  test  can  be  generalized  to  metabolomics  data.  The  goal  is  to determine  if  the  behavior  of  a  group  of
metabolites,  belonging  to  the  same  pathway,  is significantly  related  to a particular  outcome  of  interest,
e.g.,  case/control  or  environmental  conditions.  The  results  show  that  the  global  test  can  indeed  be  used
in such  situations.  This  is  illustrated  with  extensive  intracellular  metabolomics  data  from  Escherichia  coli
and Saccharomyces  cerevisiae  under  different  environmental  conditions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many current problems in metabolomics can be summa-
rized as finding differences between conditions. The prototypical
metabolomics biomarker study is an example: diseased versus
control individuals are subjected to urine or serum metabolomics
measurements and subsequently statistical methods are used to
find the differences. This is mostly done using multivariate data
analysis tools such as PLS-DA (Partial Least Squares Discriminant
Analysis) [1,2], but also univariate tools are used [3].  Both tools have
drawbacks, e.g., in univariate methods the multiple testing problem
is present and in multivariate analysis model interpretation can be
difficult. Shortcuts have been proposed, such as simplivariate mod-
els [4] that try to find groups of similarly behaving metabolites.
Another route to tackle the problem is to use a priori biological
information, such as the knowledge of pathways or modules.

Cellular processes arise as the result of many reactions between
metabolic intermediates [5].  These reactions are functionally
organized in pathways, which together form a large network.
Most studies focused on relating changes in pathways to different
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conditions by using RNA micro-array data [6–9]. Here we describe
the extension of a statistical tool, previously developed for analysis
of RNA micro-array data, to the analysis of metabolomics data.

Studying statistics for a whole group of genes or metabolites
avoids the often time consuming task of multiple testing for each
gene or metabolite separately [10]. For metabolomics, predefined
groups of pathways [5,11,12] or functional modules can be used
in this approach. For example, in lipidomics, the test can be per-
formed per lipid class instead of per lipid. Another advantage of
group testing is that it can detect differences between conditions
that are caused by subtle changes in several metabolites, which are
difficult to discover by single metabolite testing [13].

Nam and Kim [14] distinguished three types of methods for test-
ing pathways, depending on the hypothesis that is tested. The first
kind of algorithms test if under particular conditions, a group of
genes belonging to a certain pathway is differentially expressed
compared with the rest of the genes in the data set (= H1 hypoth-
esis), e.g. T-profiler [15] and PAGE (Parametric Analysis of Gene
Set Enrichment) [16]. The second type of methods examines if a
selected group of genes from the same pathway has a different
behavior under a first condition, compared to a second condition
(= H2 hypothesis), e.g. Goeman’s global test [7] and SAM-GS (Sig-
nificance Analysis of Microarray for Gene Sets) [17]. The third kind
of methods, known as Gene Set Enrichment Analysis (GSEA), test
the hypothesis that none of the predefined groups of genes in the
data set is different between two conditions (= H3 hypothesis).
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Fig. 1. (a) Diauxic growth curve. The red points indicate in which phases the measurements were taken. (b) An example of a metabolite concentration profile (pyruvate)
under diauxic growth. The different growth phases are indicated on the graph. Abbreviations: nmol, nanomoles; gdwt, gram dry weight. (For interpretation of the references
to  color in this figure legend, the reader is referred to the web version of the article.)

Two types of GSEA are developed: simple GSEA [18,19] and GSEA
using linear models [20,21]. The tested groups of genes can be
predefined groups from e.g. Gene Ontology or KEGG (Kyoto Ency-
clopedia of Genes and Genomes) pathways [5,11,12,18,13,19,21]
or can be defined based on chromosome location [20,19]. Exten-
sions of GSEA for metabolomics data have been implemented in the
web-based tools MSEA (Metabolite Set Enrichment Analysis) [22],
MPEA (Metabolite Pathway Enrichment Analysis) [23] and MBRole
(Metabolite Biological Role) [24]. In Quantitative Enrichment Anal-
ysis (QEA), which is part of MSEA, the Q-statistic from Goeman’s
global test was  used [22], but the method was not described in the
literature about MSEA.

In the current paper, we explain the working of Goeman’s global
test for metabolomics in full detail. We  discuss the usefulness of this
test for establishing significant differences between conditions at
the pathway (or module) level. We  critically evaluate the validity
of the method by using two worked out examples and studying the
biological relevance of the test results. For the Escherichia coli data
set, the test is applied to find pathways that are different under glu-
cose growth compared to acetate growth. With the Saccharomyces
cerevisiae data set, the behavior of glycolysis and the tricarboxylic
acid (TCA) cycle under three sets of conditions is examined: aerobic
versus anaerobic; glucose pulse versus short-term glucose depri-
vation (feed off); larger versus smaller glucose pulse. The results
show that Goeman’s global test can indeed be used in situations
where one wants to know if a metabolic pathway is significantly
related to a change in conditions.

2. Materials and methods

2.1. E. coli data set

GC–MS (gas chromatography–mass spectrometry) and LC–MS
(liquid chromatography–mass spectrometry) data [25] of batch cul-
tures on glucose of E. coli were obtained from TNO Quality of Life
(Zeist, The Netherlands). During growth on glucose, acetate is pro-
duced. After depletion of glucose, there is a diauxic shift to acetate
growth [26]. Sampling of two fermentation processes at eleven time
points was performed: four time points in the exponential phase
during growth on glucose, five in the post-diauxic phase (growth
on acetate), and two in the stationary phase (all carbon sources
exhausted) (see Fig. 1(a)). The data set consists of absolute con-
centrations (in nanomoles per gram dry weight) of metabolites
from glycolysis, the tricarboxylic acid (TCA) cycle and biosynthe-
sis of amino acids, nucleotides and nucleosides. The data are not

equidistantly sampled: the time between two subsequent samples
ranges from 0.5 to 2 h. The window of observation is from 10.5
to 20.5 h elapsed fermentation time (see example for pyruvate,
Fig. 1(b)).

2.2. S. cerevisiae data set

LC–MS data [27–29] of continuous cultures1 of S. cerevisiae were
obtained from the Kluyver Centre for Genomics of Industrial Fer-
mentation (Biotechnology Department, TU Delft, The Netherlands).
The cells were cultivated to steady-state in glucose-limited
chemostats under aerobic (D = 0.1 h−1) or anaerobic (D = 0.05 h−1)
conditions. Furthermore, each steady-state was used to perform a
short-term perturbation response experiment, by rapid addition of
a concentrated pulse solution and withdrawing samples within a
short time frame. Eleven aerobic and four anaerobic experiments
were performed. Different perturbations were obtained depending
on the composition of the glucose pulse solution. An overview is
given in Table 1.

The data set consists of measurements of absolute metabolite
concentrations (in micromoles per gram dry weight) from glycol-
ysis and some of its branches and from the tricarboxylic acid cycle
(TCA cycle). The data are not equidistantly sampled: in most experi-
ments the sampling frequency is higher immediately after the pulse
and decreases throughout the rest of the time series. The window
of observation also differs between experiments.

2.3. Data pre-treatment

The intracellular concentrations of different metabolites can dif-
fer by more than five orders of magnitude [30]. Furthermore, the
abundance of a given compound is not necessarily related to its bio-
logical importance [33]. Therefore, the data sets were autoscaled,
so that all metabolite levels have zero mean and unit variance. In
this way, all compounds are put on the same scale [32].

2.4. Goeman’s global test

Assume that n samples of p metabolites are measured, of which
m metabolites belonging to the same pathway are selected. Our
selection of pathway metabolites is based on the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) [5,11,12]. Let i be the index for

1 Chemostat cultures, continuous inflow and outflow.
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