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a  b  s  t  r  a  c  t

The  output  of many  instruments  can be  modeled  as  a  convolution  of  an  impulse  response  and  a  series
of  sharp  spikes.  Deconvolution  considers  the  inverse  problem:  estimate  the  input  spike  train  from  an
observed  (noisy)  output  signal.  We  approach  this  task  as  a linear  inverse  problem,  solved  using  penalized
regression.  We  propose  the use  of  an  L0 penalty  and  compare  it with  the  more  common  L2 and  L1 penalties.
In all  cases  a  simple  and  iterative  weighted  regression  procedure  can  be  used.  The  model  is  extended  with
a smooth  component  to  handle  drifting  baselines.  Application  to  three  different  data  sets  shows  excellent
results.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many instruments produce signals that consist of a series
of pulses. Examples are electrophoretic DNA sequencers, chro-
matographs, and spectrometers. Some biological signals have the
same characteristics; an example is hormone release in the human
body. The pulses have (more or less) equal shapes but different
heights, and they may  overlap. These output signals are the con-
volution of a series of true (input) spikes or diracs and the impulse
response function. The task is to deduce the heights and positions
of the spikes from the output signal.

Essentially there are two ways to approach this issue. The first
is to search for local maxima to find peak positions, followed by
summarizing the signal in their neighborhoods, to estimate peak
heights. Examples of this approach are found in many places in
the literature. We  mention only a small selection. Yasui et al. [27]
search for zeros of the first derivative, while Mariscotti [14] uses the
second derivative. When computing derivatives, it is essential that
proper noise filtering is first applied. Wavelets have been proposed
as a tool for filtering by Coombes et al. [6] in this setting, but other
filters are also possible. Du et al. [7] use a wavelet spectrum to locate
peaks. It is also possible to apply a discrete Markov chain as done
by Silagadze [22] and Morháč [16], these approaches results in a
probability distribution targeting the location of peaks.
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The second approach is to model signals as a convolution of a
series of sharp input spikes and a constant impulse response. The
task then is to estimate the input from the observed output signal.
This is the deconvolution problem that has been studied in many
fields of science. It is a so-called inverse problem, and it is gen-
erally very badly conditioned, which means that small changes in
the observed signal or the impulse response lead to large changes
in the estimated input. Conversely, many very different inputs are
compatible with the observed output.

To address the bad condition various deconvolution algorithms
have been proposed. An early solution is the van Cittert algo-
rithm (see e.g. [11]) that was  later improved in the form of the
Gold algorithm (see e.g. [1]). Other iterative approaches are often
based on the Richardson–Lucy algorithm or using the general class
of expectation maximisation (EM) algorithms (see e.g. [13,24]).
The EM algorithm iteratively redistributes the observed output,
proportionally to the current estimate of the input. Averaging
gives an improved estimate of the input, to be used in the next
iteration.

The class of deconvolution algorithms also contains a branch of
boosting algorithms. Cardot et al. [3] propose to use boosting to
find an optimal set of input spikes. As a first step the locations of
peak are estimated and subsequently renewed in an updating step,
in the third stage peaks that are too close to each other are merged
to one. Recently Morháč  and Matoušek [18] proposed a boosted
version of the Gold and Richardson–Lucy algorithms.

A general approach to ill-conditioned problems is the use of reg-
ularization: some form of penalty is imposed on the parameters
of the model. We  already referred to Li and Speed [13]. A famil-
iar example in the chemometric literature is ridge regression [10],
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Fig. 1. A convolution matrix S with m + (n − 1) rows and m columns, in 3D in the
upper panel and in the lower panel in 2D. (For interpretation of the references to
color in this figure legend, the reader is referred to the web  version of the article.)

where the penalty is on the sum of the squares of the regression
coefficients. This is called the L2 norm; generally the sum of abso-
lute values (of the elements of a vector) to the power p is called
the Lp norm. In recent years the Lasso [23], a penalty based on the

L1 norm, the sum of absolute values, has become popular in many
applications. References can be found in the next section.

Penalties with a norm based on p < 1 have received little atten-
tion. A main theoretical obstacle has been the fact that they leads to
a non-convex optimization problem, in contrast to penalties with
p ≥ 1. Hence one cannot be sure of having found a global mini-
mum.  Another drawback is the lack of good practical algorithms.
In this paper we propose regularized deconvolution using the L0
penalty, and we  show very good results using an algorithm based
on repeated weighted regression. Apparently, in the limited con-
text of pulse train deconvolution, a non-convex objective function
is not a real problem.

In the next section we  introduce the deconvolution framework,
and we show the effects of regularization with different norms.
There we assume that the impulse response is known. In practice
only an approximation will be available, so we also consider “blind
deconvolution”: the estimation of both input and impulse response
form one signal. Drifting baselines are quite common; we present
two  ways to handle them.

In Section 3 we present three applications to experimental data.
Two  of them are instrumental (electrophoretic DNA sequencing
and gas chromatography), the third is a series of high-frequency
measurements of concentrations of luteinizing hormone in human
blood, which show strong pulsative behavior.

In the final section we  discuss possible extensions and refine-
ments.

2. The model

2.1. Convolution and deconvolution

Consider a (causal) discrete linear system with an input signal x,
and a impulse response (or spread function) c, which incorporates
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Fig. 2. Simulated data. Top panel: data (full blue line with dots), fit (full red line) and individual pulses (thick gray lines). Middle panel: input as estimated without a penalty.
Bottom panel: input as estimated with an L2 penalty. The small squares give the positions and the heights of the nonzero elements of the input used for the simulation. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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