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ABSTRACT

Spectroscopic studies of complex clinical fluids have led to the application of a more holistic approach to
their chemical analysis becoming more popular and widely employed. The efficient and effective inter-
pretation of multidimensional spectroscopic data relies on many chemometric techniques and one such
group of tools is represented by so-called correlation analysis methods. Typical of these techniques are
two-dimensional correlation analysis and statistical total correlation spectroscopy (STOCSY). Whilst the
former has largely been applied to optical spectroscopic analysis, STOCSY was developed and has been
applied almost exclusively to NMR metabonomic studies. Using a 'H NMR study of human blood plasma,
from subjects recovering from exhaustive exercise trials, the basic concepts and applications of these
techniques are examined. Typical information from their application to NMR-based metabonomics is pre-
sented and their value in aiding interpretation of NMR data obtained from biological systems is illustrated.
Major energy metabolites are identified in the NMR spectra and the dynamics of their appearance and
removal from plasma during exercise recovery are illustrated and discussed. The complementary nature

of two-dimensional correlation analysis and statistical total correlation spectroscopy are highlighted.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Metabonomics is the measurement of the dynamic metabolic
response of living systems to stimuli or modification [1]. The field
of study developed from the application of NMR spectroscopy and
mass spectrometry as tools for the study of complex biofluids [2,3].
Metabonomics encompasses comprehensive metabolomic profil-
ing in whole organisms and systematic changes due to, for example,
diet, lifestyle, and pharmaceutical interventions. In recent years
the use and application of NMR-based metabonomics has grown
rapidly and NMR techniques are commonly used in profiling urine
and blood plasma [4-7], as well as other biofluids such as human
cerebrospinal fluid [8], seminal fluid, synovial fluid, digestive fluids,
etc. [2-4,9]. NMR is a powerful technique for biochemical analysis
and such applications are in contrast to the more traditional use
of NMR spectroscopy as a tool for chemical structural elucidation.
The spectra provide information on a wide range of low molecular
weight metabolites pertaining to biochemical status and physio-
logical processes. Lindon and Nicholson have recently reviewed the
field and summarised the status of metabonomics [10].

1H NMR spectra of biofluids, such as urine and plasma, may
contain thousands of signals arising from many hundreds of
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molecules, and a limiting factor in retrieving and understand-
ing the relevant information from biological NMR spectra is their
complexity [6]. One common approach to handling this complex-
ity is to consider the NMR signal intensity data from a series
of samples as a multi-sample array of metabolite concentra-
tions and to treat it as a statistical object for data reduction
and pattern recognition analysis [11]. With increasing spectral
resolution (500-950MHz fields are commonly employed) the
complexity of the spectra increases and efficient and effective pre-
processing and multivariate analysis methods are of paramount
importance.

Signal alignment of spectra recorded from a series of similar
samples presents a serious challenge. Averaging, or ‘binning’, data
in a pre-selected window of frequencies has been one commonly
used technique to reduce the effect of misalignment [3,12] but
this can lead to loss of resolution and information. As a result,
whole-spectrum analysis is gaining favour with sophisticated spec-
tra alignment algorithms being employed [13-15].

Data analysis in metabonomics makes extensive use of factor
analysis methods. Unsupervised pattern recognition using princi-
pal components analysis is common and when a dependant variable
is present, for example a known concentration of a species or time
of recording of each of a dynamic series of spectra, supervised
data analysis methods are employed, of which partial least squares
(PLS) is the most common [16]. These chemometric techniques are
applied via decomposition of a suitable dispersion matrix, of which
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the covariance matrix, or related correlation coefficient matrix, is
the most common.

Since the covariance matrix summarises the statistical interac-
tion between measured variables it is not surprising that many
multivariate analysis techniques use covariance, or correlation
coefficient, to inform subsequent data analysis.

Correlation analysis in NMR studies was pioneered in the 1970s,
and two-dimensional NMR COSY (Correlation Spectroscopy) exper-
iments allow determination of connectivity in a molecule by
identifying spin-spin proton coupling [17]. In seeking to apply
a similar concept to other spectroscopic techniques, particularly
infrared spectroscopy, Noda recognised that the RF pulse sequences
used in two-dimensional NMR may be regarded as external per-
turbations applied to stimulate the system and he developed
perturbation-based two-dimensional IR correlation spectroscopy
using an externally applied oscillating mechanical perturbation of
a sample. To overcome the limitation that the perturbation should
be simple sinusoidal, Noda expanded the concept and mathemati-
cal basis of the technique to handle an arbitrary form of variable
dependence [18] and developed what is referred to as general-
ized two-dimensional correlation spectroscopy which has been
applied to many analytical techniques and a wide variety of analy-
ses, including NMR spectroscopy [19]. For example, in a dynamic
series of NMR spectra a significant correlation coefficient value
between resonance peaks indicates them as arising from the same
or related (in terms of process dynamics) molecular species.

NMR-based metabonomics has largely been pioneered by
Nicholson and co-workers who developed a technique for aiding
identification and assignment of multiple NMR peaks from the
same molecule in a complex biofluids mixture [20,21]. The method,
Statistical Total Correlation Spectroscopy (STOCSY), displays co-
linearity of intensity variables from a series of NMR spectra, so that
correlations between resonances arising from the same molecule
can be identified [7,22].

Sasic has recently applied two-dimensional correlation analysis
of TH NMR metabonomics data from rat urine collected at specific
time intervals following administration of a trial drug [23]. Both
binned and high-resolution data were examined, and covariance
and correlation coefficient maps produced to aid interpretation of
the data.

In the current study, human blood plasma samples, collected
from subjects following vigorous exercise and ingestion of a con-
trolled diet, have been investigated by 'H NMR spectroscopy and
the data subjected to STOCSY and generalised two-dimensional cor-
relation analysis. Recently, Pederson et al. have reported the effects
of glycogen-depleting exercise and subsequent carbohydrate and
caffeine ingestion on rates of post-exercise muscle glycogen accu-
mulation [24]. Plasma samples collected during a comparable study
replicating the methods of Pedersen and co-workers [24] are anal-
ysed here to illustrate the merits and features of two-dimensional
correlation analysis and demonstrate the potential for TH NMR
analysis in exercise biochemistry.

2. Theory

Two-dimensional correlation spectroscopy provides graphical
representation of the quantitative relationships between signal
intensity at all pairs of spectral variable over the range of the
dependant, perturbation variable. In the case of a dynamic series
of spectra this perturbation variable is represented by the known
time intervals at which discrete samples are collected or, in a con-
tinuous study, the spectra are recorded during the experiment. The
methods consider not the specific individual spectra themselves
but the dynamics and changes associated with spectral features.
Changes in data are visualised and investigated by examination of
spectral maps.

Noda treated the correlation between signals as a complex
number comprising two orthogonal components known as the syn-
chronous, ®, and asynchronous, ¥, correlation intensity [ 18]. These
components are defined by,

?=X".X (1)
v=X".N.X (2)

where X is a matrix of corrected spectra, recorded at i=1 to n
sequential time intervals over §=1-m spectral variables (chemi-
cal shift values). Generally, X is the matrix of mean-centred spectra
and @ is thus the covariance matrix indicating the simultaneous
changes of the spectral intensities observed at any pair of spectral
variables. Visual inspection of & will indicate correlated, positive
and negative, and uncorrelated spectral features. The diagonal vec-
tor of @ is referred to as the autocorrelation spectrum comprising
the so-called auto-peaks. For mean-centred data this diagonal is
simply the vector of variance values for the series of spectra.

The asynchronous matrix, ¥, represents sequential or unsyn-
chronised variations and is obtained from the cross product
between the original mean-centred data and orthogonalised data.
This is achieved in Eq. (2) by the Hilbert-Noda matrix, N (size n x n)
that serves to extract out of phase portions of the signals. It is
defined by

0
M*:{1ﬁm-kx

The asynchronous matrix, W, serves to indicate sequential, but
not simultaneous, changes of spectral intensities measured at two
different spectral variables. The presence of a non-zero element in
W means that that the spectral dynamics at the pair of variables are
not in linear relationships [25]. The diagonal of ¥ is thus zero by
definition. Noda has provided a graphical interpretation of ® and
W and their complementary nature [26].

It is usual to display both @ and ¥ as two-dimensional con-
tour plots of covariance between the measured intensities at the
spectral variables. However, visual interpretation of contour maps
of the covariance, synchronous and asynchronous, matrices is dif-
ficult with high-resolution spectra, such as the 'H data used here.
The matrices are relatively large (typically a few thousand elements
square) and sparse, and relationships between molecular species
may be far apart on the chemical shift axis. This problem is over-
come by selecting discrete slices from the matrices. A slice, ®(51,6)
or W(51,8), defines the synchronous or asynchronous relationships
between a single peak (characteristic of a selected molecule appear-
ing at 81) and all other peaks, across all §. The selected molecule,
or peak, is sometimes referred to as the ‘driver’ peak [27].

The covariance matrix, @, as defined in Equation 1 also lies at
the heart of STOCSY, which in addition makes use of the correlation
coefficient matrix between spectral variables, R. The correlation
coefficient between recorded spectra and the dependant variable,
time, p(4,t), can also be useful.

ifi=k
otherwise

(3)

R=XT.X (4)
po.=X"-E (5)

where X represents the matrix of standardised (auto-scaled) spec-
tral intensity values and  the standardised time variable. The values
from a slice, R (1, §), from the correlation coefficient matrix indi-
cate the degree of correlation between the selected variable and all
others and have been displayed by colour coding the correlation
coefficient values and projecting these on the NMR spectrum or
covariance slice [20]. In this study, the correlation coefficient slices
are displayed as separate plots for clarity alongside the covariance,
synchronous and asynchronous, slice plots.
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