
Analytica Chimica Acta 648 (2009) 207–214

Contents lists available at ScienceDirect

Analytica Chimica Acta

journa l homepage: www.e lsev ier .com/ locate /aca

Analysis of MALDI FT-ICR mass spectrometry data: A time series approach

Donald A. Barkauskas a,∗, Scott R. Kronewitter b, Carlito B. Lebrilla b, David M. Rocke c

a Children’s Oncology Group, 440 E. Huntington Drive Suite 402, Arcadia, CA, 91006, USA
b Department of Chemistry, University of California, Davis, CA, 95616, USA
c Division of Biostatistics, School of Medicine, University of California, Davis, CA, 95616, USA

a r t i c l e i n f o

Article history:
Received 20 May 2009
Received in revised form 24 June 2009
Accepted 25 June 2009
Available online 5 July 2009

Keywords:
Fourier transform ion cyclotron resonance
Generalized gamma distribution
Matrix-assisted laser desorption/ionization

a b s t r a c t

Matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry
is a technique for high mass-resolution analysis of substances that is rapidly gaining popularity as an
analytic tool. Extracting signal from the background noise, however, poses significant challenges. In this
article, we model the noise part of a spectrum as an autoregressive, moving average (ARMA) time series
with innovations given by a generalized gamma distribution with varying scale parameter but constant
shape parameter and exponent. This enables us to classify peaks found in actual spectra as either noise
or signal using a reasonable criterion that outperforms a standard threshold criterion.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Matrix-assisted laser desorption/ionization Fourier transform
ion cyclotron resonance mass spectrometry (MALDI FT-ICR MS) is
a technique for high mass-resolution analysis of substances that is
rapidly gaining popularity as an analytic tool in proteomics. Typ-
ically in MALDI FT-ICR MS, a sample (the analyte) is mixed with
a chemical that absorbs light at the wavelength of the laser (the
matrix) in a solution of organic solvent and water. The resulting
solution is then spotted on a MALDI plate and the solvent is allowed
to evaporate, leaving behind the matrix and the analyte. A laser is
fired at the MALDI plate and is absorbed by the matrix. The matrix
becomes ionized and transfers charge to the analyte, creating the
ions of interest (with fewer fragments than would be created by
direct ablation of the analyte with a laser). The ions are guided with
a quadrupole ion guide into the ICR cell where the ions cyclotron
in a magnetic field. While in the cell, the ions are excited and
ion cyclotron frequencies are measured. The angular velocity, and
therefore the frequency, of a charged particle is determined solely
by its mass-to-charge ratio. Using Fourier analysis, the frequencies
can be resolved into a sum of pure sinusoidal curves with given
frequencies and amplitudes. The frequencies correspond to the
mass-to-charge ratios and the amplitudes correspond to the con-
centrations of the compounds in the analyte. FT-ICR MS is known
for high mass resolution, with separation thresholds on the order
of 10−3 Daltons (Da) or better [1,2].
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The spectra analyzed in this article were recorded on an external
source MALDI FT-ICR instrument (HiResMALDI, IonSpec Corpora-
tion, Irvine, CA) equipped with a 7.0 T superconducting magnet and
a pulsed Nd:YAG laser 355 nm. In addition to hundreds of spectra
generated as described above for a cancer study [3] using human
blood serum as the analyte, we generated 56 spectra using neither
analyte nor matrix. We will refer to the latter category of spectra
as “noise spectra” and use them in Sections 2 and 3 to develop our
model, then apply the model to a spectrum with known contents
in Section 4.

We find that an autoregressive, moving average (ARMA) time
series with innovations given by a generalized gamma distribution
can closely model the properties of the noise spectra, and that this
representation is useful for accurately identifying real substances
in spectra produced using analyte. The modeling assumptions
developed in this article are implemented in the R package FTI-
CRMS, available either from the Comprehensive R Archive Network
(http://www.r-project.org/) or from the first author.

2. Methods

2.1. Description of data

A typical noise spectrum is shown in Fig. 1 with frequency in
kilohertz (kHz) plotted on the horizontal axis. (In the mass spec-
trometry literature, it is more usual to seem/z—the mass-to-charge
ratio—on the horizontal axis, but the actual process of measurement
uses equally spaced frequencies, and them/z values are computed
using one of several non-linear transformations on the frequencies
[4]. Thus, the spectrum pictured in Fig. 1 is how it appears after the
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Fig. 1. Typical noise spectrum. A MALDI FT-ICR spectrum produced without matrix or analyte. The spike extending off the top of the picture is actually two peaks at frequencies
of 41.21 and 42.21 kHz which extend upward to intensities of approximately 222.7 and 95.4, respectively.

fast Fourier transform is applied to the measured data.) The thick
spike at a frequency of roughly 40 kHz is actually two peaks at fre-
quencies 41.21 and 42.21 kHz which extend upward to intensities
of approximately 222.7 and 95.4, respectively, and are apparently
instrumental noise—they appear in all 56 noise spectra at roughly
the same spots and have no isotope peaks. In the analysis that fol-
lows, we set the values of the spectra at frequencies corresponding
to these two peaks to be missing.

2.2. Properties of noise spectra

We start by considering two striking properties of the noise
spectra. The first property is the special forms of the sample
autocorrelation function (ACF) and sample partial autocorrelation
function (PACF) of the noise spectra; Fig. 2 displays the graphs of
the sample ACF and sample PACF of the noise spectrum from Fig. 1.
Starting with lag 7, the sample ACF is nearly constant at roughly

Fig. 2. Sample ACF and sample PACF of typical noise spectrum. The sample autocor-
relation function (top) and sample partial autocorrelation function (bottom) through
lag 50 of the noise spectrum from Fig. 1.

0.0613. The sample PACF, on the other hand, oscillates between pos-
itive and negative values before decaying to a small positive value.
As we show in Section 2.3, the sample ACF enables us to get infor-
mation not only about the baseline but also about the coefficients to
use in the ARMA representation of the spectrum. The sample PACF
will be useful for evaluating the final ARMA model for accuracy. The
second property comes from looking at the sample “homogenized”
cumulants �̂′

1, �̂
′
2, . . . of the spectrum. (The sample homogenized

cumulants of a set of data are related to the mean, variance, skew-
ness, kurtosis, etc., of the data and will be defined precisely in
Section 2.4, Eq. (5).) Fig. 3 displays scatterplots of the running sam-
ple homogenized cumulants (with bandwidth 4001 points—other
bandwidths give similar plots) of the noise spectrum from Fig. 1.
It is clear that the first three sample homogenized cumulants have
strong relationships. As we show in Section 2.4, this enables us to get
information about the proper parameters to use in the generalized
gamma distribution for the innovations in the ARMA representation
of the spectrum.

2.3. Analysis of the ACF

The sample ACF r̂k at lag k of a realization {yt}nt=1 of a time series
{Yt}nt=1 is defined by

r̂k =

n∑
t=k+1

(yt − ȳ)(yt−k − ȳ)

n∑
t=1

(yt − ȳ)2

, (1)

where ȳ is the sample mean. This is usually defined for stationary
time series, in which (among other criteria) the means {�t} of the
underlying random variables {Yt} are assumed to be constant. How-
ever, estimating the underlying means for a noise spectrum by some
method (running means, running medians, etc.) clearly shows that
they are not constant.

Thus, suppose that Yt∼(�t,�2
t ) with known means {�t}nt=1 and

suppose that the correlation between Yt and Yt−k is given by �̃k
(independent of t). Then, we have

�̃k = E{(Yt −�t)(Yt−k −�t−k)}√
E{(Yt −�t)2} ·

√
E{(Yt−k −�t−k)2}

�̃k

n∑
t=1

(yt −�t)2 ≈
n∑

t=k+1

(yt −�t)(yt−k −�t−k),
(2)

where E(·) is the expected value operator. We subtract the right-
hand side of Eq. (2) from the left and add the result to the numerator
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