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a b s t r a c t

Artificial neural networks are a family of non-linear computational methods, loosely inspired by the
human brain, that have found application in an increasing number of fields of analytical chemistry
and specifically of food control. In this review, the main neural network architectures are described
and examples of their application to solve food analytical problems are presented, together with some
considerations about their uses and misuses.
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1. Introduction

Artificial neural networks (ANNs) are a set of mathematical
methods, often encompassed with artificial intelligence, which in
some way attempt to mimic the functioning of the human brain
[1]. Their introduction in the literature dates back to the late ‘50s,
and was the result of the work of scientists by many different fields

∗ Tel.: +39 06 49913856; fax: +39 06 4457050.
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including neurophysiologists or eminent mathematicians like John
von Neumann. Originally they were designed to be a schematic but
as accurate as possible model of the activity of the human brain to
capture the essential features that make it more powerful than any
existing computer (versatility, adaptive response to external stim-
uli, highly effective pattern recognition ability even in the presence
of noisy data, and so on). Under this respect the pioneering works
of McCulloch and Pitts [2], Hebb [3], Rosenblatt [4], Widrow and
Hoff [5] deserve to be mentioned. However, the initial enthusiasm
of contemporary scientists about the topic rapidly faded during the
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70s, mainly due to two events. First of all, the practical difficulties
in solving many real-world problems. Secondly, the results of the
theoretical study published in 1969 by Minsky and Papert [6], who
showed that, in the form they were used at the time (called the per-
ceptron), neural networks suffered serious limitations, that could
not be overcome in a simple way. Therefore, there was a diffused
belief that the era of artificial neural network would soon have come
to an end when, in 1982, Hopfield published a paper [7] that was
destined to stimulate a resurgence in neural network research, as he
introduced two key concepts that allowed to overcome all the limi-
tations identified by Minsky and Papert: the non-linearity between
the total input received by a neuron and the output it produces and
the possibility of feedback coupling of outputs with inputs. This
milestone, together with the introduction of the back-propagation
(BP) algorithm in 1986 [8–10] has triggered an explosion of inter-
est, together with a change in paradigm: in recent years, there is
greater interest in using neural networks as problem-solving algo-
rithms than in developing them as accurate representations of the
human nervous system. Accordingly, they are being successfully
applied across an extraordinary range of problem domains, in areas
as diverse as finance, medical diagnosis, process control, engineer-
ing, geology, weather forecasting, physics and, obviously, chemistry.

Among the different factors that can be cited as responsible
for neural networks being applied successfully in many areas so
different among themselves, two important ones are without any
doubt that they are very sophisticated non-linear computational
tools capable of modeling extremely complex functions and that
they can learn by example: the data structure is automatically learnt
from representative data by means of opportunely designed train-
ing algorithms.

As in many other analytical fields, the use of ANNs for data pro-
cessing has significantly been increasing for the last 20 years, so that
examples of application of this technique to almost every aspect of
food analysis can be found in the literature. However, compared to
other areas, the diffusion of computational models based on neu-
ral networks for food analysis is still at a relatively earlier stage of
development, so that on one hand many researchers either do not
know about the existence of the technique or ignore its potential
for solving food control-related problems, while on the other hand
one can find in the literature examples of the misuse of ANNs due
to an inadequate knowledge of their principles.

Therefore, the aim of this review is to critically discuss the pos-
sibility of applying artificial neural networks for food analysis, by
presenting a general introduction to the technique, a description of
the main typologies of problems encountered in the field and some
examples of solution, and considerations about some key issues.
Indeed the kinds of data encountered in food science are various
and often rather different among themselves, ranging from prob-
lems where a limited number of “clean” variables are measured on a
suitable number of samples and the underlying model is almost lin-
ear or at least mildly non-linear to situations where many variables,
possibly noisy or highly correlated are measured on a small number
of samples and the functional relation that one wants to model is
heavily non-linear. In such situations, a versatile and adaptive tech-
nique like artificial neural networks can provide a better modeling,
where traditional chemometric techniques fail.

2. A brief survey of ANN concepts

Artificial neural networks [11–13] are a family of mathematical
models that share among themselves the characteristics that their
main algorithmic features are somewhat inspired to some issues of
the functioning of the human brain. However, it should be stressed
that while the idea of mimicking and modeling the real neural activ-
ity was a primary goal of the first network models, nowadays this
aspect is mostly left aside and neural networks are used more as a

Fig. 1. Schematic representation of an artificial neuron.

mathematical than a biological model. Under this respect, for the
sake of its chemical applications, a neural network can be thought
of as a way of modeling a functional relationship between a set of
input and a set of corresponding output variables:

y = f (x) (1)

where x and y are the input and output vectors, respectively, and the
symbol f means that a functional relationship is sought. Depending
on the applications, the y vector can represent the sample coor-
dinates on a reduced-dimensionality space (exploratory analysis),
a binary vectors of class-membership (classification) or a real-
valued dependent vector (regression). All these applications will be
described in detail in the following sections.

When looking at the peculiarities of artificial neural networks,
what makes them different from traditional mathematical mod-
els used in chemometrics is the way the functional relationship
described in Eq. (1) is accomplished. Indeed, in neural networks
modeling the functional dependence between the output and the
input space is described in an implicit way, rather than analyti-
cally: the peculiarity of ANNs relies on the fact that they operate
using a large number of parallel connected simple arithmetic units
(that are called neurons in analogy to their biological equivalent).
Mathematically speaking, a neuron can be defined as a non-linear,
parameterized, bounded function, so that the variables this func-
tion depends on are called the inputs of the neuron and its value is
called the output (see Fig. 1). In this framework, parameterization
can occur in two different fashions:

1. The parameters are associated to the inputs of the unit, so that
a ‘global input’ of the neuron is built as a linear combination of
the inputs xi, weighted by the parameters (called weights, wi);
the output of the unit is then obtained as a non-linear function
(here labeled f) of this global input, according to:

y = f (w0 +
∑n

i=1
wixi) (2)

2. The parameters are assigned to the neuron non-linearity, i.e. they
take part in the definition of the unit. This occurs, for instance,
when f is a gaussian radial basis function:

y = exp[−
∑n

i=1

(xi −wi)
2

2w2
0

] (3)

where the {wi}i = 1:n are the coordinates of the barycenter of the
multivariate normal, and a constant standard deviation, w0, is
assumed along all directions.

As far as now, we have only spoken of individual neurons: the
definition of an artificial neural network requires a further passage.
Indeed, just as a neuron can be thought as a non-linear function of
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