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a b s t r a c t

Past years have shown that near infra-red (NIR) can be successfully applied in online process control. The
NIR measurements are commonly utilized because they are fast, versatile and relatively cost-effective. The
online instruments produce an enormous amount of data, which need to be analyzed for, e.g., reliability,
like any other online data. Instrumental data containing huge amount of simultaneously determined
variables is multivariate in nature, and it has to be taken into account when the data is analyzed. The
aim of this study was to show that variographic analysis gives a novel insight to online NIR data and the
total uncertainty including variation arising from process itself can be estimated. It will be shown, that
variographic analysis can be utilized in monitoring the process dynamics, as well as, in optimization of
sampling interval.

The periodic behavior was identified with autocorrelation and fast Fourier transformation (FFT) as
well as with the variographic analysis. However, the variographic analysis gave a more detailed insight
to the process dynamics and enabled estimation of uncertainty as a function of sampling interval. These
approaches are illustrated with real industrial data originating from a petrochemical plant. Similar periodic
behavior could be detected by applying any of the three mathematical methods to the online variable
sets containing either NIR or other process control variables. The total uncertainty of the NIR data was
estimated by applying variographic analysis with an assumption that the different principal components
(PC) are individual “error sources” causing uncertainty.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The use of near infra-red (NIR) technology has rapidly been
spread across the industry as a continuous process control tool
due to its cost-effectiveness and high capacity for accurate online
process control and to the many other advantages it offers. Online
installations are usually the most challenging ones of the NIR instal-
lations, and in practice there exists several possible sources of
uncertainty. The instrument is typically placed close to the moni-
tored process requiring that the instrument withstands the harsh
conditions of the process environment. Frequently, these condi-
tions include extreme temperature conditions, high humidity, high
dust levels, etc. The sampling is done by a probe that is directly
inserted into the process line, and the design of the probe should
be such that the probe will have the ability to withstand the process
conditions and provide reliable information during the cleaning
and calibration cycles.

The online NIR measurements establish time series, which
are most commonly utilized in prediction of a quality parameter
related to sampled material or the process flow [1–2]. In several
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instruments there exist some inbuilt algorithms, which are utilized
to assure robustness of the instrument. However, the data can be
analyzed further to gain advantageous information about the pro-
cess or instrumental behavior. The spectral data could be analyzed
for, e.g., autocorrelation structure, drifting or periodic behavior by
applying fast Fourier transformation (FFT), autocorrelation or the
variographic analysis. These mathematical methods are applied
widely in analyzing univariate data, but they can also be utilized
in analyzing multivariate data, such as spectra. For instrumental
data of this kind, the estimation of the periodic behavior might be
difficult without multivariate methods, because of the noise and
the number of collinear variables.

The instrumental data of this type is often collinear having low
rank and to handle the data the multivariate methods, such as prin-
cipal component analysis (PCA) and partial least squares (PLS), are
found essential. In the approaches presented here PCA is utilized to
extract the information from online NIR data for the investigation
of periodicity and uncertainty. The data analyses of the behavior
in time domain and the total uncertainty, i.e., combined standard
uncertainty, are based on principal components instead of the orig-
inal data. These score vectors reducing the noise of original data
represents each a certain amount of the total variance, described
by R2 or eigenvalues of the PCs, and thus they are handled as inde-
pendent error components or sources in the variographic analyses.
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The online processes are always dynamic, and the data tend
to have some inner correlation structure in time domain, as well.
This autocorrelation structure should be taken into account when
total uncertainty of the measurements is analyzed. Variographic
analyses presented by Pierre Gy are applicable in autocorrelated
data of this kind. From the measurement point of view, it is often
argued, that one of the main advantages that the NIR method offers
is the high precision, which can be higher than that of the pri-
mary analytical method, and the speed (several quality variables
can be measured in the order of seconds). In that case the measure
of precision is the standard errors reported for the NIR measure-
ments typically based on the calibration samples, which are used
during the calibration development. However, the online NIR tech-
nology is utilized to process control and the measurements reflects
the changes in production. Changes in standard deviation or in
other words, in process variation, can be monitored via the NIR
instruments as well. With variographic analysis the total standard
uncertainty including uncertainty originating with heterogeneity
of the process flow and conditions is analyzed.

2. Methods

2.1. Variographic analysis

Variographic analysis is primarily applied when the uncertainty
of a process variable or its optimal sampling interval is estimated. It
is also commonly utilized to identify the variability of the process.
Theory of variographic analysis is described in details in several
publications introducing the Pierre Gy’s sampling theory [3–5].

In the variographic analysis, heterogeneity, hi, i.e. the relative
fluctuation from the process mean, is defined as in Eq. (1).

hi = ai − aL

aL

Msi
M̄s

, i = 1, 2, ..., N (1)

where i is the index of a sample; ai is the analytical result; aL is the
weighted mean of the lot; Msi

is the size of sample i; M̄s is the mean
sample size (or flow rate); N is the total number of samples.

From the heterogeneity, an experimental variogram can be
estimated. The variogram expresses correlation between any two
heterogeneity values, i.e. autocorrelation of the function. The
variogram is estimated based on the differences between the het-
erogeneities as in Eq. (2).

Vj = 1
2(N − j)

N−j∑
i=1

(hi+j − hi)
2, j = 1, 2, ..., N/2 (2)

For the optimal frequency of sampling, a Y-intercept of the var-
iogram is needed. In this case study, the intercept is estimated
graphically. The possible periodic behavior, as well as random drifts
in the data, can be observed from the variogram. When the variance
of the sampling is estimated, the variogram has to be integrated as
in Eq. (3).

Wj = 1
j

j∫

0

Vjdj = 1
j

Sj (3)

The sample selection methods utilized in the variographic analysis
are systematic sampling and stratified sampling. In the systematic
sampling the lot to be sampled is first divided into equal sizes sub-
lot and from each sub-lot one sample is taken systematically. In the
stratified sampling strategy, the lot is also first divided into equal
sizes sub-lots, but from each sub-lot, one random sample is taken.
In general, systematic sampling leads to smallest uncertainty esti-
mates. However, the stratified sampling strategy should be utilized,

if systematic periodic behavior is found. Periodic behavior has also
been taken into account, when an optimal sampling frequency is
considered. The variance of the stratified sampling can be expressed
as in Eq. (4) and the variance of the systematic sampling as in Eq.
(5).

s2
st = 2

j2

j∫

0

Sj dj (4)

s2
sy = 2Wj/2 − s2

st (5)

2.2. Autocorrelation

Autocorrelation is the correlation of a signal with itself at differ-
ent points in time. It is widely utilized in finding repeating patterns
in a signal, i.e., in this particular case in the score vectors or in the
original process variables. Autocorrelation is simply computed as
correlation of the vector against its time-shifted values. Theory of
autocorrelation is well-explained in the literature [6–7].

2.3. Fast Fourier transformation

The Fourier transformation is a powerful technique that is
commonly utilized in detecting periodicity, patterns and tendem
repeats in various data sequences. Its’ ability to represent time
domain data in the frequency domain and vice versa has also
numerous other applications. FFT is an efficient method for com-
puting the discrete Fourier transform (DFT), and was first developed
by Cooley and Tukey [8]. The algorithm was later refined for even
greater speed and for using with different data lengths through the
“mixed-radix” algorithms. The theory of FFT is explained in detail
in several mathematical handbooks, for example Ref. [9].

The Fourier transformation maps time domain functions into
frequency domain representations and is defined as in Eq. (6).

X(f ) = F{x(t)} =
∞∫

−∞

x(t)e−j2�ftdt (6)

where x(t) is time domain signal; X(f) is its Fourier Transform.
Similarly, the discrete Fourier transform maps discrete–time

sequences into discrete–frequency representations and is given by
Eq. (7).

Xk =
∑n−1

i=0
xie

−j2�ik/n, for k = 0, 1, 2, ..., n − 1, (7)

where x is input sequence; X is its drift; n is the number of samples
in both the discrete–time and the discrete–frequency domains.

In this study FFT with a periodogram and power spectrum has
been utilized together with the other two mathematical methods
revealing periods in the multivariate or in the original data vectors.
In FFT windowing multiplies input data supplied to the FFT with
a value that decreases to zero at each end of data. To investigate
the cycles or the periodicity in the data periodograms and power
spectrum has been computed with Matlab [10].

The power spectrum Sxx(f) of time domain signal x(t) is defined
as in Eq. (8).

Sxx(f ) = X(f )X ∗ (f ) = |X(f )|2 (8)

where X(f) is F{x(t)}; X*(f) is complex conjugate of X(f).
A complex magnitude squared of X(f) is called the power. A plot

of power versus frequency is called periodogram. However, since a
scale cycles/(sample interval) is found inconvenient, the power is
studied as (sampling interval)/cycle.
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