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Abstract

The transesterification of vegetable oils, animal fats or waste oils with an alcohol (such as methanol) in the presence of a homogeneous catalyst
(sodium hydroxide or methoxyde) is commonly used to produce biodiesel. The quality control of the final product is an important issue and near
infrared (NIR) spectroscopy recently appears as an appealing alternative to the conventional analytical methods. The use of NIR spectroscopy for
this purpose first involves the development of calibration models to relate the near infrared spectrum of biodiesel with the analytical data. The type
of pre-processing technique applied to the data prior to the development of calibration may greatly influence the performance of the model. This
work analyses the effect of some commonly used pre-processing techniques applied prior to partial least squares (PLS) and principal components
regressions (PCR) in the quality of the calibration models developed to relate the near infrared spectrum of biodiesel and its content of methanol and
water. The results confirm the importance of testing various pre-processing techniques. For the water content, the smaller validation and prediction
errors were obtained by a combination of a second order Savitsky–Golay derivative followed by mean centring prior to PLS and PCR, whereas
for methanol calibration the best results were obtained with a first order Savitsky–Golay derivative plus mean centring followed by the orthogonal
signal correction.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There are several advantages of using biodiesel as a fuel in
diesel motors, such as the reduction of the greenhouse gases
emissions, the increasing of the eco-efficiency and, if waste
frying oils (WFO) are used as the raw-material for biodiesel
production, the treatment of industrial and household wastes
[1,2].

The production of biodiesel may be achieved by a
homogeneous (sodium hydroxide or methoxyde) catalysed
transesterification reaction between a lipid (vegetable oils and
fats) and a short chain alcohol, such as methanol, to produce
an ester and a by-product, glycerol. This reaction occurs step-
wise, with mono and diglycerides as intermediate products [3].
At the end of the reaction period, the glycerol rich-phase is sepa-
rated from the ester layer by decantation or centrifugation. After
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separation, the biodiesel phase is contaminated with mono, di
and triglycerides, methanol, catalyst, free glycerol and soaps
and has to be purified to comply with the European Standard
EN 14214 [4]. The washing of the esters phase with water fol-
lowed by vacuum drying is the most commonly used process for
biodiesel purification [5].

Since it is possible to produce biodiesel from several dif-
ferent feedstocks and technologies, the quality control of the
final product is of great concern and the European Standard EN
14214 [4] establishes 25 parameters that have to be analysed
to certify biodiesel quality. Among these, the contents in water
and methanol are two important parameters [3]. In fact, the use
of biodiesel contaminated with water can cause corrosion in
the engine or the reaction with the glycerides to produce soaps
and glycerine. The EN imposes, therefore, a maximum content
of 0.05% (m/m) of water in fuels. Methanol is responsible for
metal corrosion, particularly of aluminium, as well as for the
decreasing of the fuel flash point. As such, a maximum con-
tent of 0.2% (m/m) of methanol in biodiesel is specified [4].
Biodiesel analyses are very expensive and time consuming and
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NIR spectroscopy appears as a cheaper and faster alternative to
perform the quality control of biodiesel [6–9].

The use of NIR spectroscopy in combination with multivari-
ate data analysis for the analysis of biofuels and other complex
matrices has been reported in recent papers [3–9]. NIR spec-
troscopy is a well-established analytical technique based on the
absorption of electromagnetic energy in the region from 700
to 2500 nm. This technique enables the analysis of multicompo-
nent samples in a fast and non-destructive way, without requiring
complex pre-treatments. The use of partial least squares (PLS)
or principal components regression (PCR) allows the develop-
ment of calibration models between spectral and analytical data
[10–13]. This work analyses the effect of applying several com-
monly used pre-processing techniques, prior to the application
of PLS and PCR, in the quality of the calibration models devel-
oped to relate the near infrared spectrum of biodiesel and its
content of methanol and water.

2. Experimental

Industrial-scale and laboratory-scale samples of biodiesel
produced from soybean, mixtures of soybean and palm, and from
waste frying oils were prepared according to the procedure pre-
sented elsewhere [3,9]. Industrial samples of biodiesel produced
from soybean, palm and waste frying oils were supplied by two
Portuguese industrial companies.

The reference method for water determination was the Karl
Fisher titration [14] that was performed in a Metrohm 682 titro-
processor, while methanol content was analysed by Head Space
Gas Chromatography [15] using a HP 5890 equipped with a
PoraPlot Q packed column (3 m long).

The near-infrared diffuse transflectance spectra of the
biodiesel samples were acquired using an ABB BOMEM
MB160 spectrometer equipped with an InGaAs detector and
a transflectance probe from SOLVIAS. Spectra were recorded
in duplicate for each sample at room temperature (22–24 ◦C),
with the aid of the Galactic Grams software package, in the wave
number range of 12,000–4000 cm−1, with a spectral resolution
of 16 cm−1. The average of the two measurements was used for
model development.

2.1. Data analyses and calibration development

All calculations were carried out using Matlab Version 6.5
(MathWorks, Natick, MA) and the PLS Toolbox Version 3.0
(Eigenvector Research Inc., USA) for Matlab. Partial least
squares (PLS) and principal components regressions (PCR) were
used to develop the calibration models with the spectral and the
analytical data. Both methods search for linear combinations,
named as factors or components, of the original X-values and
use only these linear combinations in the regression equation
of the model that relates the spectra X with a given property
of interest, y, in this case the content of water or methanol in
biodiesel [11]. However, the approach followed in each case to
derive the model is different. In fact, PCR selects the compo-
nents according to their ability to account for the variability in X,
without using information about y. On the other hand, instead of

using components, PLS uses factors determined by employing
both X and y in estimation; for PLS regression each compo-
nent is obtained by maximizing the covariance between y and
all possible linear combinations of the columns of X. This leads
to components, which are more directly related to the variability
in y than the principal ones of the PCR approach [11].

Prior to PCR or PLS regressions, various widely used
pre-processing techniques described in literature [12], were
applied to the data. This work presents the calibration results
obtained from untreated data (identified in the tables below
as none) and from pre-treated values, using the following
methods: Mean Centering (MC); Mean Scattering Correction
(MSC) followed by MC (MSC + MC); Standard Normal Vari-
ate scaling (SNV) plus MC (SNV + MC); first and second
order Savitsky–Golay derivative followed by mean center-
ing (SV1 + MC and SV2 + MC, respectively); MC followed
by the Orthogonal Signal Correction method (MC + OSC)
and, finally, the SV1 + MC and SV2 + MC followed by OSC
(SV1 + MC + OSC, SV2 + MC + OSC, respectively).

The Orthogonal Signal Correction is a method developed to
reduce the data variance in the spectra (X) due to light scatter
effects and to more general types of interferences that have no
correlation with the measured property y (water or methanol
content). The idea is that all the information in the spectrum
related to y should be considered rather than removed [11].

One of the most important steps in developing a reliable cal-
ibration model between the NIR spectrum and the analytical
data is the selection of the optimum number of latent variables
(LV) or principal components (PC) to be used. There are several
methods described in the literature to select this number, such
as the akaike information criterion [16], bootstrap [17,18], cross
validation [11,17,19], ICOMP criterion for PCR [20] and con-
ditional model dimensionality test for PLS [21]. Among these,
the method used in this work, LOOCV or leave one out cross-
validation, is one of the most commonly used criteria. Therefore,
all the PCR and PLS regressions were developed using the
LOOCV method to determine the optimum number of latent
variables or principal components. Additionally, the conditional
model dimensionality test was also used for the PLS regressions
to check any possible overfitting of the data. For both water and
methanol models, this test confirmed the choice of the latent vari-
ables number obtained by applying the cross-validation method,
whereas the calculated risk of over-fitting was lower than 1%.

The detection of outliers was performed based on the leverage
values, Q-residuals, and Studentized y-residuals. Thus, a sample
was considered to be an outlier if its leverage value was twice
as large as the average leverage value (given by 2(1 + LV)/N
where LV is the number of latent variables and N the number
of samples), or if its Q- residual falls above the 95% confidence
limits for the considered model, or yet if y-residual of the sample
was larger than twice the residual standard deviation [12].

The calibration models were developed taking into account
the number of LV or PC, and by calculating the root mean square
errors of the cross-validation, RMSECV, and of the external vali-
dation, RMSEP and the determination coefficients, Q2

Y, between
the predicted and the measured values [10,12]. The later coeffi-
cient, calculated using Eq. (1), quantifies the amount of variance
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