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Abstract

Genetic algorithms represent a powerful global-optimisation tool applicable in solving tasks of high complexity in science, technology, medicine,
communication, etc. The usual genetic-algorithm calculation scheme is extended here by introduction of a quadratic self-learning operator, which
performs a partial local search for randomly selected representatives of the population. This operator is aimed as a minor deterministic contribution
to the (stochastic) genetic search. The population representing the trial solutions is split into two equal subpopulations allowed to exhibit different
mutation rates (so called asymmetric mutation). The convergence is studied in detail exploiting a crystallographic-test example of indexing of
powder diffraction data of orthorhombic lithium copper oxide, varying such parameters as mutation rates and the learning rate. It is shown through
the averaged (over the subpopulation) fitness behaviour, how the genetic diversity in the population depends on the mutation rate of the given
subpopulation. Conditions and algorithm parameter values favourable for convergence in the framework of proposed approach are discussed using
the results for the mentioned example. Further data are studied with a somewhat modified algorithm using periodically varying mutation rates
and a problem-specific operator. The chance of finding the global optimum and the convergence speed are observed to be strongly influenced
by the effective mutation level and on the self-learning level. The optimal values of these two parameters are about 6 and 5%, respectively. The
periodic changes of mutation rate are found to improve the explorative abilities of the algorithm. The results of the study confirm that the applied
methodology leads to improvement of the classical genetic algorithm and, therefore, it is expected to be helpful in constructing of algorithms
permitting to solve similar tasks of higher complexity.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Global search and optimisation methods aim to find (or
to approach) a global minimum or at least a ‘satisfactory’
solution in a large space characterised by a complex shape
and many extremes. They are used for solving tasks, which
cannot be treated neither in an analytical way nor by using
‘hill-climbing’ search routines. One of known valuable global-
optimisation methods is provided by genetic algorithms (GAs)

Abbreviations: DPF, dynamic penalty function; GA, genetic algorithm;
HGA, hybrid genetic algorithm; LCO, lithium copper oxide; LM, local mini-
mum; MGA, mixed genetic algorithm; OFN, objective function; RGA, reduced
genetic algorithm; SL, self learning
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[1,2] forming a subset of broader classes of global-optimisation
strategies called population-based methods and evolutionary
algorithms. The application of GAs for optimisation has been
initiated by De Jong [3]. GAs are helpful in solving many-
parameter optimisation tasks in various domains of science,
technology, medicine, etc., where the local ‘hill-climbing’ tech-
niques (requiring a starting point close to the global solution) are
useless.

The concept of GAs follows the old idea of minimizing
human efforts in solving difficult scientific and technical prob-
lems by learning from nature (for discussion of this concept, see
refs. [1,2,4]). The genetic computation proceeds in the space
of variables. It mimics the evolution of living organisms repre-
sented by points in this space (individuals). In the beginning,
initial population of individuals is generated. Next generations
are successively created using simplified principles of (Dar-
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winian) evolution. The calculation is terminated according to
a stop condition such as predetermined fixed number of genera-
tions or some convergence criterion. The variables are organised
in strings composed of real or integer numbers, vectors, matrices,
logical variables . . .; frequently, the variables are binary coded.
The basic genetic operators used in formation of each new pop-
ulation include selection, crossover (both may be classified as
co-operative operators) and mutation (classified as self-adaptive
one). The search in population-based methods is most frequently
elitist (i.e. the principle of ‘survival of 35 the fittest’ prevents the
already found “optimal” solution from extinction).

For the given optimisation task, a fitness function describing
the population-member quality must be defined together with
the variable ranges and other problem-specific constraints. The
GA minimises (maximises) an objective function (OFN), which
is either identical to fitness or is defined as linearly/nonlinearly
scaled fitness. The selection operator ascertains a greater chance
to pass the “good” genes to next generations for better-adapted
individuals (solutions). This operator determines which individ-
uals are chosen for crossover, whereas the crossover operator
determines how the bits are exchanged between the individu-
als. Selection can be done on the basis of the OFN values (e.g.,
using the roulette-wheel method, on the ranking, or using the
tournament selection). A part of individuals are submitted to
crossover (with predefined crossover probability), the remaining
ones are simply transferred to the next generation. A mutation
operator typically consists of flipping a single bit with a small
probability (mutation rate, m). Using this operator ascertains that
virtually the whole space of variables is explored. On the other
hand, the flipping of a randomly selected bit means a partial
loss of genetic information acquired by previous generations.
For m =0, the GA performance is strongly limited because there
is no means for the given generation to broaden the exploration
field (it rather tends to be narrowed due to action of the selec-
tion operator). For m exceeding some limit, mipy,, the search
becomes a ‘population-based random-search’ method and the
search becomes ineffective because of very low speed of action
(the value of my;p, is indicated as 50% [2]). A compromise m
value is needed to ascertain exploration of the whole space with
the optimum speed. In algorithms reported in literature, the value
of m is either fixed (frequently at ~1-5% level), or adjusted
during calculations. Classical genetic algorithms are, typically,
elitist. They exploit three operators: roulette selection, one-point
crossover with probability = 1, and mutation.

Search and optimisation methods based on GAs are helpful in
solving difficult static and dynamic global tasks in two following
categories:

(i) finding a global extremum of a function of alow or moderate
number of variables (for example in the static problem of
fitting gaussian profiles to multiple peaks in a spectrum);

(ii) finding a solution being better than that which can be found
by either deterministic methods or random search (for exam-
ple a static problem of finding all possible atomic arrange-
ments in very large multicomponent clusters, or a dynamic
problem of weather forecast).

The former case concerns the problems where the space size,
number of variables, number of local minimums (LMs), cal-
culation time of the fitting-function value are not too large,
and constraints are not too complex. The latter case covers the
remaining, more difficult tasks.

The genetic approach to global search/optimisation fre-
quently meets the problem of slow convergence (which may
limit the real-time applications), of getting stuck in a local
minimum, and of low accuracy of the optimum-position deter-
mination. Various ways exist which help in improving the GA
action:

- using parallel processors;

- hybridising;

- adding new operators;

- modification of the GA through equipping it in some knowl-
edge specific for the given mathematical/physical/engineering
or other task.

For an objective function exhibiting many narrow LMs of
comparable depth, the search tends to be stopped at one of such
minima. For such case, several remedies are known. For exam-
ple, there exist (related to each other) dynamic penalty function,
DPF [5-8], and sequential niching [9] approaches permitting to
identify numerous LMs.

Global search and optimisation methods based on the genetic
approach find various applications in solving static as well as
dynamic computational problems. Examples of surveys and bib-
liographies of GAs applications can be found, e.g., in refs.
[10] (general), [11] (physics and chemistry), [12] (analytical
chemistry), [13,14] (engineering), [15] (pattern recognition and
machine learning), and [16] (control systems).

Applications of GAs in crystallography started about 10 years
ago (see Table 1). Here, the GAs are used, e.g., for molecular
design, structure prediction, and solving structures. A large num-
ber among the papers listed are devoted to indexing (finding the
unit-cell size) and solving the structure (finding the atomic posi-
tions and site occupancies) from powder patterns, i.e., to these
methods which contribute to determination of crystal structure
of polycrystalline materials. Now, for some of the listed crystal-
lographic purposes, commercial GA-based software is available.

Crystallographic studies performed with the use of intense
synchrotron radiation sources provide powder-diffraction data
of particularly excellent resolution and high counting rate. Solv-
ing those coming from large, low-symmetry unit cells frequently
requires a considerable computational effort. One can measure a
pattern in seconds, minutes or hours, but solving it may require
days; some patterns remain unsolved due to limited resolution
and computational barriers—that is why the indexing step is
sometimes called a bottleneck in structure determination. The
development in existing methods [74—78] focuses towards solv-
ing patterns of large unit cells, and of specimens including
impurity phases. A future progress in indexing techniques is
likely to be connected with development of global-optimisation
methods.

Indexing is a good GA-efficiency testing object because of
complex shape of the objective function: the shape is character-
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