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a b s t r a c t

In this article, a new approachdnamely, the extended ParkereSochacki method (EPSM)dis presented
for solving the MichaeliseMenten nonlinear enzymatic reaction model. The ParkereSochacki method
(PSM) is combined with a new resummation method called the SumuduePad�e resummation method to
obtain approximate analytical solutions for the model. The obtained solutions by the proposed approach
are compared with the solutions of PSM and the RungeeKutta numerical method (RKM). The comparison
proves the practicality, efficiency, and correctness of the presented approach. It serves as a basis for
solving other nonlinear biochemical reaction models in the future.

© 2015 Elsevier Inc. All rights reserved.

Consider the MichaeliseMenten enzymatic reaction model [1]
for describing the enzyme processes:

E þ A#Y/E þ X; (1)

where E is the enzyme, A is the substrate, Y is the intermediate
complex, and X is the product. The time evolution of Scheme (1) can
be evaluated by solving the system of coupled nonlinear ordinary
differential equations (ODEs) [2]:

dA
dt

¼ �k1EAþ k�1Y (2)

dE
dt

¼ �k1EAþ ðk�1 þ k2ÞY (3)

dY
dt

¼ k1EA� ðk�1 þ k2ÞY (4)

dX
dt

¼ k2Y (5)

subject to the initial conditions

Að0Þ ¼ A0; Eð0Þ ¼ E0; Yð0Þ ¼ 0; Xð0Þ ¼ 0; (6)

where the parameters k1; k�1, and k2 are positive rate constants
for each reaction. Systems (2) to (5) can be reduced to only two
equations for A and Y and in dimensionless form of concentrations
of substrate, x, and intermediate complex between enzyme and
substrate, y, are given by Ref. [2]:

dx
dt

¼ �xþ ðb� aÞyþ xy (7)

dy
dt

¼ 1
ε

x� by� xyð Þ (8)

subject to the initial conditions

xð0Þ ¼ 1; yð0Þ ¼ 0; (9)

where a; b and ε are dimensionless parameters.
The time evolution of the reaction can be found from numerical

methods, but they are sensitive to the selection of the time step size
[3]. In general, different approximate methods have been intro-
duced for solving nonlinear ODEs such as the homotopy
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perturbation method (HPM) [4,5], the homotopy analysis method
(HAM) [6,7], the variational iteration method (VIM) [8e10], and the
differential transformation method (DTM) [11,12]. Nowadays, there
is a need for more satisfactory methods.

In Refs. [13] and [14], approximate numericeanalytic solutions
for the MichaeliseMenten enzymatic reaction model are obtained
using the multistage homotopy perturbation method (MHPM) and
the multistage variational iteration method (MVIM), respectively.
The two mentioned methods divide the domain into small sub-
intervals and evaluate the solution for each sub-interval, meaning
that there is no global form for the solution for the entire domain.

The power series method, which gives a Taylor series solution, is
a promising method. For a long time, this method has been used for
linear problems. The power series method was extended to solve
nonlinear ordinary differential equations by Parker and Sochacki
[15]. However, power series solutions suffer from the problem of
limited convergence intervals. Outside the intervals of convergence
these solutions are not valid.

In this work, the ParkereSochacki method (PSM) is used to
obtain approximate analytical solutions, specifically power series
solutions, for the system of coupled nonlinear ODEs (7) and (8).
Hence, a new resummation method, called the SumuduePad�e
resummation method, is presented and applied to the obtained
series solutions for extending the domain of validity and obtaining
a good approximation to the exact solution. The obtained approx-
imate solutions are compared with the RungeeKutta method
(RKM) solutions. In general, results show that the extended Par-
kereSochacki method (EPSM) gives precise approximated
solutions.

The next section presents a concise review for the Par-
kereSochacki method. The SumuduePad�e resummation method is
discussed in the subsequent section. In the section following that,
the system of coupled nonlinear ODEs (7) and (8) is solved using
the proposed method, and the results are discussed. Finally, con-
clusions are given in the final section.

Basic idea of the ParkereSochacki method

The ParkereSochacki method [15e18] can be used for solving a
system of first-order ODEs. If the model is not a system of first-
order differential equations, auxiliary variables can be used to
write it in that form. The solution of the original ODEs is a subset of
the solution of the new system. The method produces Maclaurin
series for each variable to any degree required, thereby allowing
arbitrarily accurate solutions for the ODE system inside the regions
of convergence. To apply the ParkereSochacki method, we should
begin by defining Maclaurin series for each variable:

zðtÞ ¼
X∞
n¼0

zntn (10)

with z0 ¼ zð0Þ; z1 ¼ z0ð0Þ; z2 ¼ 1
2! z

00ð0Þ, and so on. Now, we can
define a series for the first derivative in terms of the original series:

z0ðtÞ ¼
X∞
n¼0

z
0
nt

n ¼
X∞
n¼0

ðnþ 1Þzðnþ1Þtn: (11)

Equating terms, we get z
0
n ¼ ðnþ 1Þzðnþ1Þ. Rearranging for co-

efficients of the original series, we get the relation

zðnþ1Þ ¼ z
0
n

.
ðnþ 1Þ: (12)

The core of themethod is to use the system of ODEs to replace z0n
with an expression in terms of the systemvariables. Therefore, each
coefficient of the Maclaurin series can be calculated using the

previous coefficients, and solutions of arbitrary order can be ob-
tained easily.

SumuduePad�e resummation method

Sumudu transform

During the early 1990s, a new integral transform called the
Sumudu transform was introduced by Watugala [19], who applied
it for solving ordinary differential equations in control engineering
problems. The Sumudu transform is defined over the set of
functions

A ¼
�
f ðtÞjdM; t1; t2 >0; jf ðtÞj<Me

jtj
tj ; if t2ð � 1Þj � ½0;∞Þ

�

(13)

by the following formula:

FðuÞ ¼ S½f ðtÞ� ¼ 1
u

Z∞

0

e
�
�

t
u

�
f ðtÞdt; u2ð�t1; t2Þ: (14)

Some Sumudu transform properties were established by Asiru
[20], and its fundamental properties were established by Belgacem
and coworkers [21,22]. The Sumudu transform has very useful
properties that can help to solve complex applications in science
and engineering. One of the strong points of this transform is
having units preserving properties that enable it to solve problems
without resorting to the frequency domain. This point is very
helpful, especially for problems with physical dimensions.

Pad�e approximant

The Pad�e approximant [23,24] is a type of rational approxima-
tion. It is suitable for approximating a divergent function. The
approximant is derived by expanding a function as a ratio of two
power series and determining both the numerator and denomi-
nator coefficients.

If we have a power series
P∞

i¼0ciz
i representing a function f ðzÞ,

such that

f zð Þ ¼
X∞
i¼0

ciz
i (15)

a Pad�e approximant is a rational function:

L=M½ � ¼ a0 þ a1z þ…þ aLzL

b0 þ b1z þ…þ bMzM
(16)

where b0 is chosen to be equal to 1. So, there are LþM þ 1 un-
known coefficients. Normally, the ½L=M� should fit the power series
Eq. (15) through the orders 1; z; z2; ::::; zLþM . Hence,

X∞
i¼0

ciz
i ¼ a0 þ a1z þ…þ aLzL

b0 þ b1z þ…þ bMzM
þ O

�
zLþMþ1

�
: (17)

From Eq. (17), we have

�
b0 þ b1z þ…þ bMzM

�
ðc0 þ c1z þ…Þ

¼ a0 þ a1z þ…þ aLz
L þ O

�
zLþMþ1

�
: (18)

Denominator coefficients b1;…;bM can be found from Eq. (18)
by equating the coefficients of zLþ1; zLþ2;…; zLþM . Numerator
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