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a b s t r a c t

Reagentless biosensors rely on the interaction of a binding partner and its target to generate a change in
fluorescent signal using an environment-sensitive fluorophore or Förster resonance energy transfer.
Binding affinity can exert a significant influence on both the equilibrium and the dynamic response
characteristics of such a biosensor. We here develop a kinetic model for the dynamic performance of a
reagentless biosensor. Using a sinusoidal signal for ligand concentration, our findings suggest that it is
optimal to use a binding moiety whose equilibrium dissociation constant matches that of the average
predicted input signal, while maximizing both the association rate constant and the dissociation rate
constant at the necessary ratio to create the desired equilibrium constant. Although practical limitations
constrain the attainment of these objectives, the derivation of these design principles provides guidance
for improved reagentless biosensor performance and metrics for quality standards in the development of
biosensors. These concepts are broadly relevant to reagentless biosensor modalities.

� 2014 Elsevier Inc. All rights reserved.

The field of biosensors has seen in the last decade a multitude of
new approaches for the application of reagentless sensors. The
overall strategy is the combination of a recognition unit and a
signal-transducing unit into one molecular entity. The most com-
monly used signal is change in sensor fluorescence, arising either
from fluorescence resonance energy transfer (FRET) or from solva-
tochromism. FRET was first described over half a century ago, and
its application in biology has grown with design and implementa-
tion of myriad biosensors (reviewed in [1]). Solvatochromism is a
more recent development, but is becoming more widely used as
new scaffolds (affinity molecules) and dyes (environmentally sen-
sitive fluorophores) are developed and become available (reviewed
in [2]). Several groups have successfully developed solvatochro-
mic-based biosensors using DNA aptamers [3–5], native protein
receptors [6,7], peptides [8,9], or engineered binders using protein
scaffolds [10–15]. However, to our knowledge, none of these
groups have purposely engineered binders with affinities specified
for optimal performance as a sensor, relying instead on previously
described proteins. Selecting an existing binder with an affinity

above the detection threshold is likely an adequate approach for
categorical detection of the presence or absence of an analyte.
However in a complex biological system, analyte concentrations
may vary rapidly on the time scale of seconds to minutes. For
dynamic measurement of time-varying analyte levels, the biophys-
ical characteristics of the binding event can significantly impact
biosensor accuracy and sensitivity. Given the availability of direc-
ted evolution protein engineering methodology to create binding
molecules of almost arbitrary affinity and widely varying associa-
tion and dissociation rates [16,17], these variables are available
degrees of freedom for improvement of biosensor performance.
Recently Haugh developed a reaction-diffusion model to investi-
gate biosensor signal interpretation in live cell imaging, with an
emphasis on capturing intracellular and membrane-localized phe-
nomena [18]. This analysis resulted in the identification of an
important trade-off between robust signal and perturbation of
the biological system or signal saturation. Here, we perform a the-
oretical analysis of biosensor dynamics, delineating time and
length scales important in observation of intracellular as well as
extracellular phenomena (e.g., detecting autocrine loops). Using a
sinusoidal signal as an input ligand concentration, as biological sig-
nals do vary, we present new important considerations for the
appropriate implementation of a biosensor. Further, we propose
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metrics for quality standards in the development of biosensors by
direct comparison between the input signal and the measured sig-
nal and thereby derive design criteria for improved performance.

Model formulation

The system consists of three state variables: the concentrations
of ligand (L), unbound sensor (SF) and bound sensor (SB). By virtue
of mass balance, the sum of the concentration of unbound and
bound sensor is always equal to the total sensor concentration con-
stant (STot). A linear correlation between the bound sensor and the
output signal intensity is assumed. The two rate constants govern-
ing this process are the association (kon) and the dissociation (koff)
rate constant.

The mathematical description of this interaction, a reversible
bimolecular reaction, is well documented from the perspective of
dynamic steady-state equilibrium; however, it has generally been
investigated in an environment of constant ligand concentration
[19–21]. To determine the optimal design criteria in a dynamic sys-
tem where the input (i.e., L) is time varying, we apply a frequency
response approach by sinusoidally varying the analyte input, L, and
characterizing the dynamic fluorescence intensity response of the
sensor, which is proportional to the concentration of bound sensor
SB. A range of physiological behaviors can be modeled by system-
atic variation of the mean (L0), amplitude (AL) and period (T) of
the time-variant ligand concentration. With these parameter defi-
nitions, the input function L is defined as

½L� ¼ L0 þ AL sinð2p=T tÞ: ð1Þ

To score a given set of design parameters of a sensor, we choose
three signal properties: mean signal intensity (M), normalized
amplitude (A), and phase delay (U), as defined in

M ¼ ðSmax;eq
B þ Smin;eq

B Þ=2STot ð2Þ

A ¼ ðSmax;eq
B � Smin;eq

B Þ=STot ð3Þ

U ¼ ðtðSB ¼ Smax;eq
B Þ � tðSB ¼ Smin;eq

B ÞÞ=T: ð4Þ

We assume that the system is reaction limited. Indeed the Dam-
kohler number, defined as the ratio between the characteristic
time for diffusion and that of reaction (complex formation in this
context, see Eq. (5)), will be much smaller than 1 for all relevant
kon, koff, ligand concentration ([L]), diffusion coefficient (D) so long
as the distance (rb) over which the measurement must be spatially
resolved is less than 1 lm (see Fig. S1).

Damkohler# ¼ sdiff=srxn ¼ ðr2
b=DÞ=ðkon½L� þ koff Þ�1Þ: ð5Þ

The described system is now fully governed by the three differ-
ential equations:

d½L�=dt ¼ 2p=TAL cosð2p=T tÞ � kon½L�½SF� þ koff ½SB� ð6Þ

d½SF�=dt ¼ �kon½L�½SF� þ koff ½SB� ð7Þ

d½SB�=dt ¼ þkon½L�½SF� � koff ½SB�: ð8Þ

To simplify this system further, we assume that the ligand is in
excess. Of course, as shown in the analysis by Haugh [18], this is a
constraint that must be calculated for any real system since this
assumption can often break down. Systematic use of a sensor con-
centration of one-twentieth that of the minimum ligand signal
guarantees excess ligand concentration. By substituting Eq. (1) into
(8), and using conservation of mass for the sensor species, we
obtain the 1-D governing equation:

d½SB�=dt ¼ konðSTot � SBÞðL0 þ AL sinð2p=T tÞÞ � koff ½SB�: ð9Þ

A convenient analytical solution to this system is not available.
Therefore, we solved this equation for a variety of parameter con-
ditions by numerical Euler integration (performed in MatLab). The
results are shown in the next section.

Results

Dynamic consideration reveals the crucial importance of kinetic rates
optimization

Intuitively, a sensor that has a very high affinity for its ligand
might be expected to perform as a weak dynamic sensor since
the characteristic time for complex dissociation would likely be
much greater than the period of the signal. Relevant input signal
conditions depend greatly on the system under study. In Fig. 1
we show approximate concentrations and time scales for concen-
tration variation for various classes of biological events. Many
physiological processes result in great variation of analyte concen-
tration such as cell-cycle-related proteins, signaling cascades,
immune response activation, among many others. Mathematically,
the sinusoidal function is a benchmark for representing time-
variant signals. For example the well-known Bode plot uses a sinu-
soidal signal to characterize a system’s frequency response [22].
We first investigated how output signal differs with varying the
dissociation rate constant (koff). As an initial input signal, we chose
a mean ligand concentration of 3 nM with sinusoidal oscillation
between 1 and 5 nM with a period of 100 min. This signal is shown
as a solid gray curve on Fig. 2a. In black are shown four different
sensors with varying koff but identical association rate constant
(kon = 105 M�1 s�1). In this first approach, we show the signal for
the first 4 periods (400 min). An initial condition corresponding
to SB = 0 was chosen for the analysis depicted in Fig. 2a, hence an
initial transient in signal response is observed .The signals progress
toward their dynamic steady state, where higher signal intensities
are reached with decreasing koff as expected given the equation for
complex concentration under the pseudo-first-order
approximation.

½SB� ¼ STotL0=ðL0 þ koff=konÞ: ð10Þ

This transient behavior is followed by a dynamic steady state
characterized by a constant value of the mean signal. The
equilibrium half time (t1/2) is defined as

s1=2 ¼ lnð2Þ=ðkonL0 þ koffÞ: ð11Þ

Fig.1. Various biologically relevant molecules and processes are depicted in this
figure. Typical mean concentration is shown on the horizontal axis ranging from
picomolar (pM) to millimolar (mM) against expected time scales for variation in the
ligand concentrations.
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