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Two chemometric methods, WPT-ERNN and least square support vector machines (LS-SVM), were devel-
oped to perform the simultaneous spectrophotometric determination of nitrophenol-type compounds
with overlapping spectra. The WPT-ERNN method is based on Elman recurrent neural network (ERNN)
regression combined with wavelet packet transform (WPT) preprocessing and relies on the concept of
combining the idea of WPT denoising with ERNN calibration for enhancing the noise removal ability
and the quality of regression without prior separation. The LS-SVM technique is capable of learning a
high-dimensional feature with fewer training data and reducing the computational complexity by requir-
ing the solution of only a set of linear equations instead of a quadratic programming problem. The relative
standard errors of prediction (RSEPs) obtained for all components using WPT-ERNN, ERNN, LS-SVM, par-
tial least squares (PLS), and multivariate linear regression (MLR) were compared. Experimental results
showed that the WPT-ERNN and LS-SVM methods were successful for the simultaneous determination
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of nitrophenol-type compounds even when severe overlap of spectra was present.
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Nitrophenol-type compounds are widely applied in industries
such as chemistry, petrochemical, and pharmacy and are one of the
most important raw materials for synthetic medicine, dye, herbicides,
insecticides, resins, and explosives. Because nitrophenol-type com-
pounds are cancer causing and highly poisonous, it is very important
to test and analyze these compounds to avoid the harm and danger
they may cause to humans, other living creatures, and biological sys-
tems. Simultaneous determination of nitrophenol-type compounds is
very difficult because the similarity in their structures produces over-
lapping signals. Modern instruments are capable of generating huge
data sets, but the acquired data are commonly characterized by a high
level of redundancy. As a result, many problems are created by the
noisy and highly collinear data, including poor prediction results,
unstable models, and overfitting. Moreover, traditional methods are
not able to perform direct determination without previous separa-
tion. In general, the number of objects is less than the number of vari-
ables; for ultraviolet-visible (UV-VIS)! spectrophotometry, the
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number of measurements is less than the number of wavelengths. In
such a situation, multivariate linear regression (MLR) leads to an ill-
posed inverse problem and causes a number of difficulties such as poor
predictions, overfitting, and collinearity problems. In the application of
MLR, the number of samples must be equal to or greater than the num-
ber of variables (i.e., absorbances in different wavelengths). Aiming to
resolve these issues, chemometric methods [1-4] are being developed
to eliminate irrelevant information contained in these raw data and
reduce dimensionality of the data prior to calibration. Several chemo-
metric methods, such as principal component regression (PCR) and par-
tial least squares (PLS), have recently emerged as means to overcome
this difficulty by eliminating the less important principal components
or latent variables [5,6]. However, these methods are preferably appli-
cable to linear systems. Overlap among signals and violations of the
Beer-Lambert law can often cause nonlinearities. Other sources of non-
linearity in spectrophotometric measurements are nonlinear instru-
ment responses and interactions between components. Artificial
neural network (ANN) is one of the most broadly used mathematical
algorithms for regression problems [7,8]. ANN is a mathematical model
of which composition is inspired by the structure of the human brain.
Recently, it has been proposed that ANN can be used to solve regression
problems by acting as nonparametric calibration methods that have the
ability to learn from a set of examples without requiring any knowledge
of the model type and to generalize this knowledge to new situations
[9-12]. ANN has the outstanding power for modeling both linearity
and nonlinearity systems and has shown better prospects as a
calibration model than as PLS and PCR methods in nonlinearity systems.
Currently, the most widely used ANN is a multilayer feedforward
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network (MLFN) with backpropagation (BP) algorithm. However, the
BP-MLFN method often has the deficiency of slow convergence, is
prone to the existence of many local minima during training, and tends
to overfit. Much attention has been paid to solving these problems and
to facilitating the training process into the global minimum. An ANN
called Elman recurrent neural network (ERNN) was used in this case.
It was introduced into the ANN literature by Elman in 1990 [13]. A
recurrent neural network (RNN) has recurrent links between its layers
and uses these links to provide networks with dynamic memory. In the
Elman network, a so-called context layer, which provides the network
with memory, is added to the conventional feedforward neural net-
work. The RNN is able to tackle the linear and nonlinear relationships
between spectra and concentrations and to reduce the computational
complexity of the training procedure. Until now, RNN has rarely been
applied to analytical chemistry [14].

The quality of multivariate calibration is dependent, to a great
degree, on the quality of the spectra. The quality of UV-VIS spectra
is worsened by overlap, noise, collinearity, nonlinearity, and sensi-
tivity to external conditions such as change of temperature, pres-
sure, apparatus, and physical condition of the samples. The
quality of the spectra could be improved by appropriate data pre-
treatment and feature extraction. Discrete transform techniques
are important ways of improving the quality of the spectra. The
most widely used transform techniques are the Fourier transform
(FT), discrete cosine transform (DCT), Hankel transform, Hartley
transform, and Hadamard transform. Wavelet transform (WT)
[15-17] and wavelet packet transform (WPT) [18,19] have also re-
ceived considerable attention. WT and WPT have the ability to pro-
vide information in the time and frequency domain, so they can be
used to convert data from their original domain into the wavelet
domain, where the representation of a signal is sparse and it is eas-
ier to remove noise from the signal. These characteristics of WT
and WPT make them potential techniques to perform data reduc-
tion, feature extraction, and denoising [20-25]. The wavelet func-
tions are localized in both time and frequency. Wavelet packets
(WP) is a generalization of wavelets and particular linear combina-
tions of wavelets [26-29]. WP inherits the property of time-fre-
quency localization from wavelets but offers more flexibility than
wavelets in representing different types of signals. In our research,
a wavelet packet transform-based Elman recurrent neural network
(WPT-ERNN) was developed by combining a regression model
based on ERNN with data denoising based on a WPT. To the
authors’ best knowledge, this method that uses the advantages of
combining WPT with an RNN approach has not been used for spec-
trophotometric multicomponent analysis outside our research
group.

As compared with ANN, support vector machines (SVM), pio-
neered by Vapnik [30,31], are a kind of machine learning method
founded on modern statistical learning theory and have notable
attributes, including the absence of local minima and high general-
ization ability. Suykens et al. [32] introduced a modified version of
SVM called least square support vector machines (LS-SVM) that re-
quires solving a set of linear equations instead of a quadratic pro-
gramming problem, making it computationally simpler than SVM.
Thus, LS-SVM regression has the advantage of providing the capa-
bility of learning a high-dimensional feature with fewer training
data and produces a global estimate of the concentration of multi-
components. The LS-SVM method not only has the ability to model
the linear relationship between D and C but also can grasp the non-
linearity existing in raw data. SVM and LS-SVM represent rela-
tively recent machine learning methods [33-38] and have found
some applications in biological sample analysis, image analysis,
and the classification and diagnosis of diseases [39-42].

WPT, ANN, and SVM are three of the most successful advances
in the field of applied mathematics during the past few years. The
aim of the current work was to use the advantages of these

techniques and employ the LS-SVM and WPT-ERNN methods to
perform spectrophotometric multicomponent analysis. In this
study, these two proposed methods were applied to the simulta-
neous spectrophotometric determination of a system containing
p-nitrophenol, o-nitrophenol, and 2,4-dinitrophenol.

Theory
Support vector machines

The original theory of SVM introduced by Vapnik was a valuable
tool for solving pattern recognition and classification problems
[30,31]. The basic idea of SVM is to map the data set X into a higher
dimensional feature space F via nonlinear mapping ¢ and then to
perform linear regression in the hyperspace. Vapnik expanded the
concept of SVM and developed support vector machine regression
(SVMR) by introducing an alternative cost function. The objective
of SVMR is to find a regression function that relates the input data
to the desired output property. In general, SVMR involves a solu-
tion of a quadratic programming problem. With the help of the La-
grange multiplier method and a quadratic programming algorithm,
the constrained optimization problem is solved. For the details of
SVM and SVMR algorithm, refer to Refs. [30,35-37,40].

Least squares support vector machines

LS-SVM is a modified version of SVM proposed by Suykens et al.
[32] and has an important advantage of requiring the solution of
only a set of linear equations instead of a quadratic programming
problem.

The optimization problem is to minimize the cost function (J):
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The first part of the cost function is weight decay, which is used to
regularize weight sizes and penalize quadratically large weights to
make them converge to smaller values so as to avoid deteriorating
the generalization ability of SVM. The second part of the cost func-
tion is the regression error (e;) for all of the n training objects. The
parameter ) is the regularization parameter, which indicates the
relative weight of the error term as compared with the first part
and must be optimized by the user. Analyzing Eq. (1) and its restric-
tion given by Eq. (2), a typical problem of convex optimization is
formulated. Thus, the Lagrange function is used to solve this optimi-
zation problem:
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In Eq. (3), the first two parts are the cost functions as defined earlier.
The third part is the Lagrange term, which is multiplied by the so-
called Lagrange multipliers («;). Each Lagrange multiplier corre-
sponds to a certain training point. To obtain the final LS-SVM solu-
tion, the partial first derivatives of this Lagrangian function are
obtained and are set to zero. The weight coefficients w can be writ-
ten as a linear combination of the Lagrange multipliers with the cor-
responding training objects (x;). A set of linear equations instead of
a quadratic programming problem can be obtained and is required
to be solved. From the equation, the Lagrange multipliers o are cal-
culated and o and w are put into the original regression equation.
The resulting LS-SVM model can be expressed as

n
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