Analytical Chemistry Research 2 (2014) 1-14

Contents lists available at ScienceDirect

Analytical Chemistry Research

journal homepage: www.elsevier.com/locate/ancr

Levels of methoxylated polybrominated diphenyl ethers and polybrominated diphenyl ethers in hen eggs from China

Xiaozhong Hu¹, Decong Hu¹

Technology Center of Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Qintai Road 588, Wuhan 430050, China

ARTICLE INFO

Keywords: Methoxylated polybrominated diphenyl ethers (MeO-PBDEs) Polybrominated diphenyl ethers (PBDEs) Hen eggs Isotopic dilution GC-MS

ABSTRACT

PBDEs are widely used brominated flame retardant, which are increasingly reported in the environment. MeO-PBDEs are structural analogs to PBDEs, and reported as natural products and novel pollutants present in the environment. Concentrations of thirteen PBDEs and eight MeO-PBDEs in a large number of commercial sales of hen eggs representing 15 different regions and household productions of hen eggs representing 2 different regions collected from Hubei province of China were investigated in this study. An effective isotopic dilution GC–MS method was firstly developed to simultaneously determine thirteen PBDEs and eight MeO-PBDEs in hen eggs in this study. Liquid/liquid extraction, concentrated sulfuric acid and multi-layer silica gel column chromatography cleanup were used, some important steps and crucial parameters were modified and intensified compared with other literatures, and GC and MS conditions were optimized. The limits of quantitation values of 0.2–4, 0.8–4 μ g kg⁻¹ wet weight in hen eggs were calculated for PBDEs and MeO-PBDEs, respectively. In addition, good repeatability and accuracy of the whole method were achieved. The established methods were therefore suitable for the simultaneous determinations of thirteen PBDEs and eight MeO-PBDEs in hen eggs at trace contamination levels. Using the established methods, PBDEs or MeO-PBDEs emerged in 4 of 40 household productions of hen eggs, and in low- μ g kg⁻¹ wet weight for these samples.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Polybrominated diphenyl ethers (PBDEs) are one class of halogenated organic brominated flame retardants (BFRs), and have been used industrially in large volumes for flame protection purposes in various commercial products such as electronic equipment and textiles. The commercial PBDEs products predominantly consist of so-called penta-, octa- and decabromodiphenyl ether products. They have been widely distributed in the air, dust, fish and human milk due to their physical, chemical and bio-accumulative characteristics, such as environmental persistence and high lipophilicity [1–8].

Methoxylated polybrominated diphenyl ethers (MeO-PBDEs) are structural analogs to PBDEs, which have been considered synthetic anthropogenic compounds and reported as natural products and novel pollutants present in the marine environment and fish [9–16]. It is very interesting that MeO-PBDEs were found in eggs of white-tailed sea eagles breeding in different regions of Sweden [17].

E-mail addresses: huxz2002@163.com (X. Hu), deconghu_hust@163.com (D. Hu)

Following concerns about contamination status of PBDEs and MeO-PBDEs in the environment, the rising attentions were led about the possible adverse health effects to humans. Toxicity studies indicate that the liver, thyroid gland and possibly developmental reproductive organs are particular targets of PBDEs toxicity [18,19]. More and more evidences are emerging that PBDEs show a certain toxicity in vitro and vivo [20-27]. Our study indicates PBDE-209 and PBDE-47 can inhibit the proliferation of Hep G2 cells by inducing apoptosis through ROS or NO generation [28,29]. A few researches about toxicity of MeO-PBDEs indicate the kind of compounds have effects on steroidogenic genes, aromatase activity and steroid hormones in vitro and may have the potential to affect steroidogenesis and reproduction in whole organisms [30,31]. To satisfy the requirements of further accurate risk assessments for these chemicals, especially MeO-PBDEs, it is expected that the trend in generating MeO-PBDEs and PBDEs data will be encouraged to grow in environmental and biotic samples, especially in farm and aquaculture products.

The Hubei province of China has an old farm and aquaculture production tradition. Especially there are a plenty of hen eggs from Hubei exported to other countries. These productions are favorite food for people and their safety has been highly concerned by our previous papers [32,33]. To our knowledge, there is little

EI SEVIED

¹ Decong Hu and Xiaozhong Hu contribute equally to this work and are both as the first author and corresponding author.

Table 1		
The information and the ions monitored of thirteen	n PBDEs, eight MeO-PBDEs	, MBDE-MXFS and MBDE-MXFR.

Br No.	Abbreviation	Molar mass	Precursor ions, $[M]^+$ and $[M+2]^+$, or $[M-2]^+$ (m/z)	Product ions, $[M-2Br]^{+}$ and $[(M+2)-2Br]^{+}$, or $[(M-2)-2Br]^{+}$ (m/z)	The ions monitored (m/z)	No. of MS scan functions		
PBDEs								
3	BDE17	407	406, [M+2] ⁺	246, 248	406, 408, <u>246</u> , 248	2		
3	BDE28	407	406, [M+2] ⁺	246, 248	406, 408, <u>246</u> , 248	4		
4	BDE71	486	486, [M-2] ⁺	326, 328	484, 486, <u>326</u> , 328	5		
4	BDE47	486	486, [M-2] ⁺	326, 328	484, 486, <u>326</u> , 328	6		
4	BDE66	486	486, [M-2] ⁺	326, 328	484, 486, <u>326</u> , 328	8		
5	BDE100	565	564, [M+2] ⁺	404, 406	564, 566, <u>404</u> , 406	13		
5	BDE99	565	564, [M+2] ⁺	404, 406	564, 566, <u>404</u> , 406	17		
5	BDE85	565	564, [M+2] ⁺	404, 406	564, 566, <u>404</u> , 406	20		
6	BDE154	644	644, [M-2] ⁺	484, 486	642, 644, <u>484</u> ,486	22		
6	BDE153	644	644, [M-2] ⁺	484, 486	642, 644, <u>484</u> , 486	26		
6	BDE138	644	644, [M-2] ⁺	484, 486	642, 644, <u>484</u> , 486	28		
7	BDE183	723	722, [M+2] ⁺	562, 564	722, 724, 562, <u>564</u>	30		
7	BDE190	723	722, [M+2] ⁺	562, 564	722, 724, 562, <u>564</u>	31		
MeO-PE	BDEs							
4	2'-MeO-BDE68	516	516, [M-2] ⁺	420°, 422°	514, 516, 420, 422	9		
4	6-MeO-BDE47	516	516, [M-2] ⁺	356, 420°, 422°	514, <u>516</u> , 420, 422, 356	11		
4	5-MeO-BDE47	516	516, [M-2] ⁺	356, 358	514, 516, 356, 358	14		
4	4'-MeO-BDE49	516	516, [M-2] ⁺	356, 358	514, 516, 356, 358	15		
5	5'-MeO-BDE100	595	596, [M-2] ⁺	434, 436	594, 596, 434, 436	18		
5	4'-MeO-BDE103	595	596, [M-2] ⁺	434, 436	<u>594, 596, 434, 436</u>	19		
5	5'-MeO-BDE99	595	596, [M-2] ⁺	434, 436	594, 596, 434, 436	23		
5	4'-MeO-BDE101	595	596, [M–2] ⁺	434, 436	<u>594</u> , 596, 434, 436	24		
MBDE-I	MXES							
3	¹³ C ₁₂ -BDE-28	419	418, [M+2] ⁺	258, 260	418, 420, 258, 260	3		
4	¹³ C ₁₂ -BDE-47	500	498, [M+2] ⁺	338, 340	498 500 338 340	7		
5	¹³ C ₁₂ -BDE-100	577	576, [M+2] ⁺	416, 418	576 578 416 418	12		
5	¹³ C ₁₂ -BDE-99	577	576, [M+2] ⁺	416, 418	576, 578, <u>416</u> , 418	16		
6	¹³ C ₁₂ -BDE-154	656	656, [M-2] ⁺	494, 496	654 656 496 498	21		
6	¹³ C ₁₂ -BDE-153	656	656, [M+2] ⁺	494, 496	656, 658, 494, 496	25		
7	¹³ C ₁₂ -BDE-183	735	734, [M+2] ⁺	574, 576	734, 736, 574, 576	29		
	MDC MYCD							
4	¹³ C ₁₂ -BDE-77	500	498. [M+2] ⁺	338, 340	109 500 226 229	10		
6	¹³ C ₁₂ -BDE-138	656	656 [M+2] ⁺	494 496	<u>430</u> , JUU, JJU, JJO 656, 658, 406, 409	27		
0	C12-DDL-130	0.50	000, [111.2]	101, 100	000, 008, <u>490</u> , 498	27		

The ion of underline was indicated for quantitative analysis. The symbol "*" indicates that the ion is the product ion, [M-CH₃Br]⁺.

Table 2

Retention times (RT), start time and end time of retention window, number of MS scan functions, quantitation reference for MeO-PBDEs, PBDEs, MBDE-MXFS and MBDE-MXFR on Elite-5MS, and LOQ of MeO-PBDEs and PBDEs in hen eggs. _ -

Br No.	Compounds	Quantitation reference	Retention times (RT)	Start time and end time of retention window	No. of MS scan functions	LOQ (µg kg ⁻¹ wet weight)		
Сотрои	nds using ¹³ C ₁₂ -BDE-							
3	BDE17	¹³ C ₁₂ -BDE-28	14.11	13.44-14.53	2	0.2		
3	BDE28	¹³ C ₁₂ -BDE-28	14.92	14.24-15.40	4	0.2		
4	BDE71	¹³ C ₁₂ -BDE-47	19.69	18.93-20.05	5	0.4		
4	BDE47	¹³ C ₁₂ -BDE-47	20.37	19.66-20.87	6	0.4		
4	BDE66	¹³ C ₁₂ -BDE-47	21.36	20.64-21.88	8	0.4		
5	BDE100	¹³ C ₁₂ -BDE-100	25.06	24.27-25.55	13	0.8		
5	BDE99	¹³ C ₁₂ -BDE-99	26.68	25.96-27.05	17	0.8		
5	BDE85	¹³ C ₁₂ -BDE-99	29.35	28.61-29.88	20	0.8		
Compounds using ${}^{13}C_{12}$ -BDE-138 as labeled injection internal standard								
6	BDE154	¹³ C ₁₂ -BDE-154	30.76	29.86-31.06	22	0.8		
6	BDE153	¹³ C ₁₂ -BDE-153	33.02	32.23-33.37	26	0.8		
6	BDE138	¹³ C ₁₂ -BDE-153	35.81	35.02-36.20	28	2		
7	BDE183	¹³ C ₁₂ -BDE-183	39.00	38.22-39.33	30	2		
7	BDE190	¹³ C ₁₂ -BDE-183	42.19	41.46-42.57	31	4		
Сотрои	Compounds using ${}^{13}C_{12}$ -BDE-77 as labeled injection internal standard							
4	2'-MeO-BDE68	¹³ C ₁₂ -BDE-100	22.87	22.00-23.21	9	0.8		
4	6-MeO-BDE47	¹³ C ₁₂ -BDE-100	23.66	22.81-24.12	11	0.8		
4	5-MeO-BDE47	¹³ C ₁₂ -BDE-100	25.25	24.28-25.72	14	0.8		
4	4'-MeO-BDE49	¹³ C ₁₂ -BDE-100	25.55	24.66-26.10	15	2		

Download English Version:

https://daneshyari.com/en/article/1177676

Download Persian Version:

https://daneshyari.com/article/1177676

Daneshyari.com