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We analyze the effect of different environmental conditions, sequence lengths and starting configurations on
the folding and unfolding pathways of small peptides exhibiting beta turns. We use chignolin and a sequence
of peptide G as examples. A variety of different analysis tools allows us to characterize the changes in the
folding pathways. It is observed that different harmonic modes dominate not only for different conditions
but also for different starting points. The modes remain essentially very similar but their relative importance
varies. A detailed analysis from diverse viewpoints including the influence of the particular amino acid
sequence, conformational aspects as well as the associated motions yields a global picture that is consistent
with experimental evidence and theoretical studies published elsewhere. Patterns of modes that remain
stable over a range of temperatures might serve as an additional diagnostic to identify conformations that
have reliably adopted a native fold. This could aid in reconstructing the folding process of a complete protein
by identifying conformationally determined regions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

One of the most important unsolved problems in molecular
biology is protein folding, i.e., understanding and predicting the three
dimensional native structure of a protein and the sequence of
intermediates which are assumed based on the information of its
amino acid sequence. To understand protein folding and unfolding
dynamics, molecular dynamics (MD) simulation provides a powerful
tool that can generate detailed information about the interactions
between the atoms of the protein and the solvent [1]. In atomistic MD
simulations unfolding, the reverse process of folding is normally the
more viable route [2–10] as proteins fold on timescales between
microseconds and minutes. Even with the fastest computers, such a
simulation would take years of computer time. Therefore, one has to
speed up the simulation which is possible by studying unfolding
instead at elevated temperatures. Another reason to favor the
simulation of unfolding is that one starts with the well-defined native
state (usually taken from the Protein Data Bank, PDB) in contrast to
folding where one may have difficulty in finding proper initial states
out of virtually infinitely many. There are, however, a few cases of

short chain peptides where folding can be observed. Ho and Dill
simulated the folding of a number of very short peptides [11] which
provide a good starting point for selecting fragments that reliably fold
into well-defined structures. There are at least two reasons for
choosing a short peptide: The nanosecond simulation time scale is
expected to match the real life folding and unfolding of a peptide and,
some peptides tend to mimic proteins as far as the folding/unfolding
properties are concerned [12–14].

One important structural motif in proteins is the β-hairpin. To
form a β-hairpin a peptide has to provide two sufficiently long
potential β-strands and a turn-sequence, thus requiring a minimum
length. We chose chignolin (sequence: GYDPETGTWG), a synthetic
peptide that has experimentally been shown to fold reliably into a
well-defined native β-hairpin structure in water [15,16]. The folding
and unfolding processes have been examined in several MD-
simulation studies, confirming that the folding can be observed in
silico. These studies focused on the folding free-energy landscape [17]
themain interaction partners [15,18], reproducing the experimentally
observed conformation [15], folding kinetics [19] or the key steps of
the folding mechanism [18], respectively. Here, we are mainly
interested in identifying the harmonic modes and changes in these
modes related to folding and unfolding events. We especially focus on
the dependence of the folding sequence on different non-native initial
conditions.

A second peptidewe are studying here is a related, short sequence
(DDATKTFT) of the immunoglobulin G-binding protein G that has
been reported to fold into a hairpin-turn structure [11] although
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there is some debate [20]. Here, the two C-terminal residues are
dangling, i.e., do not appear to have interaction partners in other
sections of the strand marking the minimum of sequence required
for inducing a stable reversal of the peptide backbone. We again
identify the harmonic modes and additionally study their depen-
dence on temperature and sequence length from 6 to 8 amino acids.
Thus, we are studying not only this sequence but also two shorter
variants.

Our work is in part based on the Karhunen–Loeve (KL) expansion
[21–23] which is a special type of principal component analysis (PCA)
to reduce the dimensionality of the data. PCA is an extremely useful
tool to extract meaningful spatiotemporal information from the data.
In our case, PCA helps us identify the relevant, small number of modes
or degrees of freedom of the atomic fluctuations of the protein out of
the entire simulation. In the literature, there have been several studies
along this line [10,24–27].

2. Methodology

2.1. Simulations

We perform atomistic MD simulations of the two peptides using
the Gromacs code [28] with the united atom GROMOS96 43a1 force
field [29] for the peptides and the SPC water model [30]. Simulations
use periodic boundary conditions in all three directions with a 1 or 2 fs
time step. Bond lengths were constrained by the linear constraint
solver (LINCS) algorithm [31]. The simulations used the PME
technique for the long range electrostatics [32] with a 0.12 nm
Fourier grid spacing and a 1.2 nm cut-off radius. Unfolding of the 8-
residue peptide (DDATKTFT) of immunoglobulin G-binding protein G
was studied at five different temperatures using Gromacs 3.3.1: 290,
300, 325, 430, and 500 K. We also performed simulations at 300 K
with the 6 and 7 residue versions DDATKT and DDATKTF. The initial
conformation of the peptide was taken from the protein data bank
(PDB code: 2OED, residues 46 to 51, 52 or 53 respectively). Two
crystal structures are available for the immunoglobulin G-binding
protein G, 2OED and 2 GB1. The overall RMSD between the Cα atoms
of these structures is only 0.111 nm such that they represent the same
fold. The peptide was confined into a cubic box of water molecules.
The energy of the system was initially minimized using steepest
descent. After the minimization, the resulting system was heated to
five different temperatures independently, keeping pressure and
temperature fixed (NPT ensemble) using a Berendsen thermostat with
a coupling time constant of 0.1 ps and an anisotropic Berendsen
barostat [33] with a coupling time constant of 0.2 ps with reference
pressure 1 bar in all directions and compressibility 1.12 10−6 bar−1.
The shift scheme was used to compute the short range van der Waals
interactions with a 1 nm cut-off radius. Equations of motion were
numerically integrated using the leap-frog algorithm [34]. The visual
molecular dynamics (VMD) software [35] was used for displaying
snapshots. The simulations were carried out for 9 ns at 290 K and for
20 ns at the other temperatures.

The same settings were applied for studying the folding and
unfolding of chignolin starting from different initial conformations.
The respective peptide input structures in terms of sequence and
conformation were generated by tleap, a program of the Amber
molecular simulation package, version 9 [36]. The entire simulation
system was composed of the decapeptide immersed in 588–1110
watermolecules (depending on the boxsize required to accommodate
the diverse input conformations) and subjected to NVT-simulations
before switching to NPT. Simulations were carried out for 20–50 ns.
For analyzing the trajectories with respect to the evolution of energy
terms, hydrogen-bonding network or backbone conformation, auxil-
iary programs of the Gromacs package as well as from the Amber
package [37], were employed.

2.2. Principal component analysis

MD simulations produce a large amount of data on the dynamics of
the protein molecule during folding or unfolding processes. Simple
time series plots or 3D movies, while useful, are not very effective
means to extract correlations among backbone atoms and identify key
mechanistic patterns. Principal components analysis (PCA) or Karhu-
nen–Loeve expansion (KLE) has been used extensively to explain the
salient features of MD trajectories [24–26,38]. The goal of PCA is to
reduce the dimensionality of large scale data sets and summarize the
motion in a small number of modes. For this analysis, only the
backbone Cα atoms are considered here. Before the data is analyzed
the center of mass motion has to be removed to eliminate the trivial
translation modes. Furthermore, we rotate all molecules into a
common frame so that rotational degrees of freedom are removed
and the x direction is the direction of the largest eigenvalue of the
gyration tensor. To accomplish this, we determine at every simulation
step the axes of the gyration tensor and align themwith the Cartesian
coordinates. The resultingmatrix has the dimensionsM×3N, whereM
represents the number of time steps and N is the number of residues
in the peptide chain. Often, we findMNN3N. The final form of the data
matrix can be expressed as the following array:

R =

x1ðt1Þ x2ðt1Þ ::: y1ðt1Þ y2ðt1Þ ::: zNðt1Þ
x1ðt2Þ : ::: : : : :
::: : ::: : : : :

x1ðtMÞ x2ðtMÞ ::: y1ðtMÞ y2ðtMÞ ::: zNðtMÞ

2
664

3
775 ð1Þ

Then, the elements of the spatial covariance matrix Φ for Eq. (1)
are computed from:

Φij =
1
M

∑
M

m=1
RiðtmÞRjðtmÞ ð2Þ

An eigenvalue decomposition of Φ yields,

Φϕj = λjϕj ð3Þ

where λj is the jth eigenvalue, and ϕj is the jth eigenvector of Φ,
respectively. ϕj is also referred to as the spatial eigenvector or spatial
mode of thematrix. Thematrix R can be expressed in terms of its finite
expansion as

RðtmÞ = ∑
3N

j=1
cjðtmÞϕj m = 1 ;2; :::::M ð4Þ

The temporal mode cj(tm) represents the time varying amplitude
of the spatial mode and is computed by projecting the data onto the
spatial modes

cjðtmÞ = RT ðtmÞϕj ð5Þ

If this calculation is repeated for all sampling times, m=1, 2,...M,
one gets the time series cj = tcjðt1Þ cjðt2Þ ::::::::cjðtMÞ b for the jth modal
amplitude. The modal amplitudes cj are zero mean, and orthogonal,
i.e., 〈cjðtÞ〉 = 0 and 〈cTi cj〉 = λiδij.

The PCA, or KLE, will have K modes (eigenvector directions) and
each eigenvalue measures the mean amplitude of projection of its
corresponding mode and establishes the relative importance of the
mode. Among the class of all linear expansions, KLE is optimal in the
sense that, on a subspace of lower dimension Kbb3N, it offers optimal
fidelity. As each mode explains a certain amount of variance
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