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One-class classification (OCC) has attracted a great deal of attentions from various disciplines. Few attempts
aremade to extend the scope of such application for process monitoring. In the presentwork, the Principal Com-
ponent Analysis (PCA) and Variational Bayesian Principal Component Analysis (VBPCA) approach provides a
powerful tool to project original data into lower data set as well as spreading different types of faults with differ-
ent directions. This, along with multiple types of one-class classifiers (density-based, boundary-based,
reconstruction-based and combination-based) that are able to isolate abnormal data fromnormal one, supported
the design of process monitoring. These methodologies have been validated by process data collected from a
Wastewater Treatment Plant (WWTP). The results showed that the proposed methodology is capable of detect-
ing sensor faults and process faults with good accuracy under different scenarios.

© 2015 Published by Elsevier B.V.

1. Introduction

Due to the increasing safety requirement in the chemical processes,
there is a strong need tomonitor the operation process aiming to detect
early and identify the root cause of a fault (fault diagnosis) or the
abnormality that might negatively affect the process [1,2].

In the early stage, fault detection was performed by using univariate
statistical techniques like simple thresholding [3]. However, since the
industrial products are more heavily instrumented and complex
increasingly, the data obtained is seldomunivariate, but rather presents
multivariate features. The resulted huge amount of correlated data
requires proper techniques to extract useful information. One of
the plausible ways is to project the data into a lower-dimensional
space that accurately characterizes the state of the analyzed system. In
this respect, Multivariate Statistical Process Control (MSPC) methods,
such as principal component analysis [4,5], partial least-squares (PLS)
[6], Gaussian process latent variable models [7] and independent
component analysis (ICA) [8], are always used to make data more com-
prehensible by extracting relevant information. Also, they are capable of
providing graphical tools easy to apply and interpret by process opera-
tors. However, traditional multivariate quality control charts, such as
Hotelling's T2 chart, assume that quality characteristics follow a multi-
variate normal distribution [9]. In many industrial applications, the
distribution concerning the sampled data is not known, implying the

need to construct a robust control chart suitable for the real applica-
tions. Even though proper control chart can be constructed, any pure
data-based (or statistical-based) fault diagnosismethodswill have diffi-
culty in diagnosing on-line faulty data with much different faulty data.

As the limitations of current MSPC techniques, a more widely
used approach applied to address unknown distributions consists of
adjusting the control limits of conventional control charts by estimating
the empirical percentiles of the monitored statistic. If the number of
samples for training is small, the bootstrap re-sampling technique can
be used [10]. Alternatively, a different paradigm consists of using classi-
fication methods that are designed to adapt data mining and machine
learning technique to MSPC [11]. Up to date, both of non-linear classifi-
cation, like artificial neural networks (ANN) [12] and Support Vector
Machine (SVM) [13], and linear classification, like Fisher discriminate
analysis (FDA), have been available for fault diagnosis. Most conven-
tional classifiers assume more or less equally balanced data classes.
However, for most of cases, they do not work well when any class is
severely under-sampled or is completely absent, which is very common
for a faulty class. One-class classification provide an alternative able to
estimate a multivariate region that envelops the majority of training
data. Then, the contour of this region plays the role of the control limit
for further validation, and any observation that belongs to the minority
and falls outside of this region is signaled. Therefore, these methods can
be implemented without the need for prior knowledge about the data
distributions. Several studies have been devoted such work recently
with the goal of implementing one-class-classification algorithms
as an alternative to traditional control charts [14,15], even as an exten-
sion to prediction modeling validation [16]. Sun and Tsung proposed
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kernel-distance-based charts (K-charts) based on Support Vector Data
Description (SVDD) algorithm, revealing that K charts performed better
than T2 charts [17]. Kumar et al. used one-class SVM to construct robust
K charts through normalized monitoring statistics [18]. However, most
of these control charts are limited to SVDD, i.e., boundary-based one-
class-classification. Even though SVDD is able to perform well, the
user should choose the kernel function, soft margin factor, and other
corresponding parameters like Gaussian kernel distance, polynomial
order, etc. The best selection of model parameters in SVM algorithm is
not a trivial task and could lead to biased results. The aforementioned al-
gorithms are all limited one type of OCCmethods. To further gain more
potentials for process monitoring, more OCC algorithms, such as
density-based (Gaussian, mixture of Gaussians and Parzen density),
reconstruction-based (PCA, k-means) [19] and combination-type OCC
(mean, product and minimize) [20], are explored necessarily.

Another important issue that has largely ignored by fault diagnosis
researchers is how to handle fault diagnosis in the presence of missing
values. Generally, mean imputation is used to substitute missing data.
To further improve the imputation accuracy, Khan et al. address this
issue of handling missing data in the target using Bayesian imputation
and EM [21]. However, the aforementionedwork is premised on the as-
sumption that the dimensions ofmissing data are notmore than two; in
other words, only one sensor failure is permitted every time step. To re-
covermissing data in themultivariate data sets, Arteaga and Ferrer gave
a detailed analysis, showing that three different techniques, two projec-
tion based techniques and a third regression based one, could be used to
handle this problem [4]. Even though the regression based technique
prevailed in the past few years [22], projection based techniques still
have potentials to be explored. Therefore, we extended VBPCA for
data projection and missing data reconstruction. It can cope with the
over-fitting problem by penalizing parameter values which correspond
to more complex explanations of the data. Furthermore, using Bayesian
learning to identify PCA parameters, missing data can be reconstructed
smoothly [23].

This paper explores the possibility of integration of data projection
methodologies with multiple types of one-class classifiers. We first
proposed two efficient ways (PCA and VBPCA) to deal with high di-
mension issues in the data set. The presented methodologies can be
shown to be useful not only for dimension reduction, but also for
fault direction isolation. Also, due to the positive performance of Var-
iational Learning in the PCA identification, original data is able to be
reduced into lower dimension even they were contaminated by
missing values. The extension of multiple one-class-classification, in-
cluding density-based (Gaussian,mixture of Gaussians, Parzen density),
reconstruction-based (PCA, k-means), boundary-based (NNDD, SVDD)
and combination-based methods, were used to establish the control
limits necessary to improve the existing fault diagnosis methods. The
resulting fault diagnosis methods with the mixture of projection
methods and one-class-classification were able to identify multiple
faults, rather than a single fault as conventional MSPC.

The remaining sections of this paper are organized as follows.
Section 2 gives some basic theories on PCA and VBPCA. Section 3
discusses the implementation of an integration of projection methods
with multiple one-class classifications for process monitoring.
Section 4 presents the performance of the proposed methods
through awastewater treatment process. Some results are discussed
in Section 5. Finally, the work is concluded in Section 6.

2. Preliminaries

2.1. Dimension reduction methods

Modern industrial processes often present huge amounts of
process data due to the large number of frequently measured variables.
One of the most widely used methods to deal with this problem in in-
dustries is PCA, which is able to compress high-dimensional data into

a lower-dimensional space, thus, making data more comprehensible
by extracting essential information. PCA uncover combinations of the
original variables with orthogonal transformation to a set of values of
linearly uncorrelated variables called principal components (PC). Due
to its sensitivity to the relative scaling of the original variables, PCA is
always used for fault detection and diagnosis in industries [24,25].

Principal component analysis (PCA) is a classical data analysis
technique and widely used for fault diagnosis. However, over-fitting
and bad locally optimal solutions could be expected in the presence of
missing data. The VBPCA provides a good alternative for handling
missing values. The basic idea behind VBPCA is to recast the problem
of computing posterior probabilities-which is inherently a high-
dimensional integration problem-as an optimization problem by intro-
ducing a class of approximating distributions, then optimizing some
criterion to find the distribution within this class that best matches
the posterior. For VBPCA, it is to find the most probable parameter set
θ = {W, vx} in the model structure:

x ¼ Wt þ e ð1Þ

where x ∈ Rd × n is the raw data W ∈ Rd × d denotes loading matrix. d is
dimensionality of the data vectors, n is number of data vectors. Both
the principal components t and the noise e are assumed normally
distributed:

p tð Þ ¼ N t : 0; Ið Þ ð2Þ

p eð Þ ¼ N e : 0; vxIð Þ ð3Þ

where vx is noise variance and I is the unit matrix. PCA is actually a
special case of VBPCAmodelwith vx being restricted to 1. The parameter
set θ can be estimated by the Variational Bayesian learning as illustrated
in the following section. The core in VBPCA is the evaluation of the prob-
ability densities of all variables in the model. p(t), p(e), p(x) and also
posteriors p(t|x), p(e|x). Since p(tj) = N(tj : 0, I) and p(ej) =
N(ej : 0, vxI) are already assumed in VBPCA model, the remaining
variables are p(x), p(t|x) and p(e|x), it is obvious that p(x) subject to nor-
mal distribution:

N x : 0;WWT þ vxI
� �

ð4Þ

where p(t|x) = N(t|x : μ t|x, σ t|x), posterior mean and posterior
covariance are computed as follow μt|x = (WTW + vxI)−1WTx, Σt|x =
vx(WTW+ vxI)−1 [26]. LetM=(WTW+ vxI)−1,we can reformulate it as

N tjx : MWTx; vxM
� �

: ð5Þ

According to the conditional Gaussian property, (e|x) =
N(e|x : μ e|x, σ e|x) where μe|x = （I − WMWT)x and σ e|x =
vxWMWT, thus,

N ejx : I−WMWT
� �

x; vxWMWT
� �

: ð6Þ

It is obvious that the observations can be decomposed to its system-
atic part and noise part for further fault diagnosis:

x ¼ WE tjx½ � þ E ejx½ � ¼ WMWT
� �

xþ I−WMWT
� �

x ð7Þ

where x = E[x|x].
All the computation aforementioned are totally dependent on the

adequate estimate of the model parameters, W and vx. To solve this
problem, Variational Bayesian (VB) learning is performed to calculate
the cost function [27]. VB learning is sensitive to posterior probability
mass rather than posterior probability density, thus making it more
resistant against over-fitting compared to other estimation methods
(Least squares, Point estimation) [19]. Typically, over-fitted solutions
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