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Current experimental research in several scientific areas must deal with the issue of high dimensionality
and complexity. In particular, experimental design strategies are hindered by the limited number of points
that can be tested due to technical and economic constraints. In this paper we propose a novel approach
called QueBN-design (Querying Bayesian network design) derived by coupling conditional probabilistic
inference in Bayesian network models and evolutionary principles. As proof-of-principle, we evaluate the
performance of our approach in a simulation study achieving very good results also in comparison with
other commonly used designs. Further, we address the problem of engineering synthetic proteins, and in
particular the 1AGY serine esterase protein. Also in this case results indicate that QueBN-design can effectively
guide the search in very large experimental spaces testing a very limited number of points, outperforming
other evolutionary and classical benchmark designs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A challenging problem in current scientific research is the design
of experiments for systems characterised by high dimensionality and
complex variable interactions. The very large number of variables
and the common nonlinear interrelations can put in difficulty classi-
cal hypotheses of statistical design and multidimensional modelling.
Also testing a very high number of experimental compositions can be
too costly and can produce a negative effect on the environment.
These issues have been recently addressed from different perspec-
tives, and several approaches have been developed, mostly focusing
on specific experimental contexts [1,2,3,4,5,6,7]. Among these, the
evolutionary design approach has shown to be very successful in a
large set of experimental studies [8,9,10,11,12,13,14], in particular
when the experimentation is conducted to search for an optimal
value, or region of optimality, in large experimental spaces. This
approach has been developed according to the principle of natural
evolution: an initial small set of design points is selected and sequen-
tially evaluated and transformed in new generations of points
moving in different and frequently unexpected areas of the
search space. Evolution has been formulated in several different
forms that include: genetic algorithms [15,14], particle swarm

optimization [16,17,18], and ant colony optimization [19,20]. The
resulting designs exhibit good performance, but frequently the
stochastic component that drives the evolution can slow down the
process of convergence to the target.

To deal with this problem, recent studies have been developed
on evolutionary experimental design, with the key idea that the
evolution can be driven by sequential probabilistic models able to
identify the relevant variables for representing the system and infer-
ring the dependence relations among them. The design becomes
model-based, and the probabilistic inferences can effectively drive
the search towards the target by testing a very small set of composi-
tions [10]. We introduce a basic structure of this design in EBN-
design [12], where a Bayesian network model is built and estimated
on both the design variables and the response variable in order to
guide the evolutionary process. The structure of the network
emerges from the observed dependence relations (arcs) among
variables (nodes), and the strength of the dependence is measured
byprobability distributions [21,22]. A similar approach is the Estimation
of Distribution Algorithms (EDAs), in which estimated BNs enter as
part of the evolutionary process [23,24,25]. These procedures use
probabilistic models to estimate the relations among variables and
computational operators to derive succeeding generations of solutions;
the explicit use of the response variable as part of themodel, as in EBN-
design, is however not part of this class of procedures. EDAs are success-
fully used inmany research areas, even if they require a large number of
generations to reach the optimal solutions, which can be sometimes
quite problematic.
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A powerful feature of Bayesian networks consists in providing
probability distributions of subsets of variables given the evidence
on some other identified variables, which are called evidence
variables [26,27]. These conditional probability distributions can
play a key role in deriving efficient design strategies and successful
search procedures.

In this paper we introduce the Querying Bayesian network design
(QueBN-design), an enhancement of EBN-design, where the experi-
mental strategy is sequentially achieved by conditioning probability
distributions on the evidence of target values of the system response.
The Bayesian network is sequentially queried to discover which are
the best design variable combinations given high values of responses,
and provided with this relevant information to construct succeeding
generations of experiments.

We evaluate the performance of QueBN-design in a simulation study
where we compare with other designs its ability to achieve the optimal
value of two benchmark functions representing high dimensional and
complex responses.

Given the successful performance of QueBN-design in simulation,
we addressed the quite hard problem of engineering new synthetic
proteins. Protein engineering is the design of new synthetic proteins
with some desirable functionalities. The construction of synthetic
proteins in several different fields involves the formulation of
statistical designs on huge spaces of ordered amino-acid sequences
[28,29,30]. Experimentation is generally conducted to find a
sequence that folds into a desired structure and then accomplishes
a particular biological function. In this context experimentation
could involve testing an extremely large set of sequences and this
might be technically infeasible or economically unsustainable.
Several computational techniques in molecular biology, such as
Rosetta design, have been developed [31,32,33] to design synthetic
proteins without the exploration of the entire sequence space.
These techniques are commonly used, but are computationally
very intensive and require the explicit computation of sequence
minimum-energy, of all-atom refinement and/or of 3D data that
are difficult to obtain. In this paper we choose to engineer proteins
with similar functionalities to the natural 1AGY serine esterase pro-
tein from the fungus Fusarium solania [34,35]. We develop QueBN-
design in two different experimental series and achieve very good
results in both.

This paper is organised as follows: in Section 2, after a brief introduc-
tion on experimental design for optimisation and on Bayesiannetworks,
we derive the Querying Bayesian network design for experimentation.
In Section 3 we describe a simulation study to test the performance of
QueBN-design and to compare itwith several evolutionary and other al-
ternative experimental designs. In Section 4we build the QueBN-design
to address the construction of synthetic proteins with similar function-
alities to the natural 1AGY serine esterase protein. In Section 5 we
provide some concluding remarks.

2. Methods

2.1. Introduction to the experimental design for optimisation

In designing experiments, we define a response variable Y and a set
of design variables X = (X1, X2,…, Xd). Assuming that each design var-
iable can take a finite set of mutually exclusive values, thewhole exper-
imental space Ω is defined as the set of combinations of all possible
design variable values (namely experimental points, design points or
tests). We assume a relation among response and design variables in
the form of

Y ¼ g Xð Þ þ η ð1Þ

where g is an unknown function representing the behaviour of the sys-
tem and η is a stochastic error term with a particular probability

distribution. Data are sampled from the experimental space according
to a chosen design

ξn ¼ Xn ¼ x1x2⋯xnð Þ0

consisting of a set of n experimental points, where each point xk =
(xk,1xk,2… xk,d) ∈Ω, k=1,…, n, is a d-dimensional vector, representing
the observed values on the design variables. For each experimental
point, we then derive the corresponding response value yk = g(xk).
The set of data from experimentation, namely (Xn, yn) with Xn as an
(n × d) -matrix and yn as an n-vector, represents the information for in-
ferring the dependence relations among variables and the estimation ĝ
of the function g, and for identifying the design point that gives the op-
timum value of the response variable, i.e. x⋆ such that g(x⋆) ≥ g(x) for all
the possible experimental points x ∈ Ω (in maximisation problem).

To select an efficient design ξn, several strategies have been pro-
posed in the literature; most of them assume polynomial models to
infer the form of g [36,37,38] or adopt surrogate models (emulators)
to obtain response surface approximations [39,40,41]. However the
high dimensionality of the experimental space, in terms of number of
design variables and/or number of possible mutually exclusive values,
makes these approaches very hard to use because they require a huge
number of experimental points to estimate g or complex surrogate
models prohibitive to simulate.

We address this problem adopting the evolutionary design, where
just a small set of experimental points are considered. In this approach,
the design is evolved across generations according to a particular func-
tion measuring the goodness of the design in reaching the objective of
the optimisation. To guide the evolution, we propose to combine the
rules of evolutionary paradigmwith the information achieved by Bayes-
ian network models. Bayesian networks can in fact represent the infor-
mation in a system by means of dependence and independence
relations, finding a minimal structure which explains the joint action
of system variables in affecting the system response. The Bayesian net-
works estimated in each generation of the evolutionary procedure can
be seen as source of information to better explain and understand of
the underlying structure of the problem and to enhance the perfor-
mance of the optimisation procedure.

2.2. Bayesian networks

Bayesian networks (BNs) are graphical models for reasoning under
uncertainty [26,42,21,22].

Formally, a BN is represented by a directed acyclic graph (DAG), com-
posed of nodes and arcs, and a probability distribution (P). DAG repre-
sents the structure of the BN model: nodes are random variables X =
(X1,X2,…,Xd), eachofwhich can take a value in afinite set of possiblemu-
tually exclusive variable values, and arcs between nodes, in the form of
Xi → Xj, indicate direct probabilistic dependencies between the corre-
sponding variables. In the BN, variables take roles of parent and child ac-
cording to the dependence relation that links the corresponding nodes: Xj

is child of Xi if Xj directly depends on Xi. The absence of an arc between
two nodes involves an independence relationship between the variables
given the value of any intermediate node. The correspondence between
the structure of the DAG and the conditional independence relationships
is derived by the d-separation criterion [26]. The Markov property then
follows from d-separation: each variable is probabilistically independent
of all its non descendant given its parents. From the Markov property,
the joint probability distribution P can be written as follows:

P X ¼ xð Þ ¼ ∏
d

i¼1
P Xi ¼ xijPa xið Þð Þ ð2Þ

where X = x indicates that the set of variables X = (X1, X2, … Xd) is
observed at specific values x = (x1, x2, … xd), and Pa(xi) is regarded
as the particular value realisation of the parent set of Xi. The set of
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