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Principal component analysis is one of the most commonly used multivariate tools to describe and summarize
data. Determining the optimal number of components in a principal componentmodel is a fundamental problem
in many fields of application. In this paper, we compare the performance of several methods developed for this
task in different areas of research. We consider statistical methods based on results from random matrix theory
(Tracy–Widom and Kritchman–Nadler testing procedures), cross-validation methods (namely the well-
characterized elementwise k-fold algorithm, ekf, and its corrected version cekf) andmethods based on numerical
approximation (SACV and GCV). The performance of these methods is assessed on both simulated and real life
data sets. In both cases, differential behavior of the considered methods is observed, for which we propose
theoretical explanations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate statistical models are widely used in many fields of
research to handle data sets with a very large number of variables and
(possibly) of observations. Principal component analysis (PCA) [1,2] is
one of the most commonly used multivariate tools to describe and
summarize large omics data sets by finding the subspace in the space
of the original variables where the data most vary [3]. In PCA the
possibly correlated original variables are converted into sets of linearly
uncorrelated variables called principal components which are in
number less or equal than the number of original variables.

The PCA model follows the expression

X ¼ TKPT
K þ EK ð1Þ

where X is a n × p data matrix, TK is the n × K scores matrix containing
the projection of the observations onto the K-dimensional space defined
by thefirstKprincipal components,PK is thep×Kmatrix of the loadings,
containing the linear combination of the original variables represented
by each principal component, and EK is the n × pmatrix of the residuals.

Determining the optimal number of components K that best fit the
data is a fundamental task in multivariate analysis and, as noted by
several authors [4,5], it is an ill-posed problem when formulated

without specifying for which purpose PCA is used. Generally speaking,
one can refer to the optimal number of components implying that the
model describes systematic variation in the data but not the noise [4],
but this can be different depending whether the application is, for in-
stance, in process monitoring or data compression. Camacho and Ferrer
[5] recently proposed a taxonomy for PCA applications, depending on
what the interest is focused on: 1) the (accurate approximation of
the) observed variables such as in data compression or dimensionality
reduction, 2) understanding and interpretation of latent variables and
3) the distribution in latent variables and residuals. In this paper we
place ourselves in the situation described in 1: the interest relies in
using PCA to extract information which is embedded in a high-
dimensional space and describing it with a limited number of compo-
nents, a problem typical in modern functional genomics, econometrics,
signal theory and image processing.

A great deal of attention has been dedicated to this problem and a
plethora of methods has been proposed, mostly by the chemometrics,
psychometrics and statistics communities (for a review see for instance
[6] and references therein).

Jolliffe [7] and Jackson [8] outlined a taxonomyof the criteria proposed
to find the optimum number of components in PCA, distinguishing three
broad categories:

1. Ad-hoc rules, like Cattel's scree test [9], the indicator function or the
embedded error [10].

2. Statistical tests, like Bartlett's test for the first component [11], the
sphericity test [12] or the Malinowski's F-test [13].
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3. Computational criteria, like cross-validation (CV), bootstrapping and
permutation like Horn's parallel analysis [14] or the SVD based
methods proposed by Dray [15].

The array of available methods for dimensionality assessment is
constantly increasing. For instance, the CHull approach [16] for model
selection can be added to the first category: it detects a model with an
optimal balance between a (large) model fit and (low) number of
parameter and can be applied to indicate the number of principal com-
ponents [17]. Similarly, Josse and Husson [18] proposed new methods
based on the numerical approximation of the CV procedure that add
to the third category.

The idea of comparingmethods for determining the number of prin-
cipal components is certainly not new, and several studies presented
comparative investigations [8,19–23]. However, these comparative stud-
ies did not consider recently developed statistical tools based on results
from random matrix theory (RMT). Moreover, the performance of the
latter has never been compared with state-of-the-art implementations
of the cross-validation procedure or numerical approximation. For this
reason it seems timely to review and perform an in-depth assessment
of cross-validation, approximated and statistical methods through a
large comparative study.

For this taskwemade use of 5 simulation schemes, corresponding to
more than 12,000 different simulated data sets accounting for different
data structure, data distribution and homo- and heteroscedastic noise.
In addition, we made use of 8 real life chemometrics data sets (mostly
NIR spectroscopy data, among which some well-known benchmark
data sets) to investigate the behavior of the methods on experimental
data. As the problem of determining the number of components is not
limited to chemometrics, we additionally considered 12 data sets stem-
ming from disciplines where chemometrics tools are routinely applied
to model and extract information, such as metabolomics (5 data sets),
proteomics (1 data set), and other (functional genomics, computational
linguistics, etc..., 4 data sets).

The paper is organized as follows. Section 2 offers a brief overview of
past works related to the problem of dimensionality assessment in PCA;
Section 3 is dedicated to the illustration of methods based on random
matrix theory, cross-validation and approximation of the cross-
validation for determining the number of components in PCA. To
make the paper self-contained, we provide a theoretical background
on which to base the discussion and interpretation of the results.
Section 4 gives the description of the data sets used for comparison of
the different methods and Section 5 is dedicated to the software used.
Section 6 offers a discussion of the results. We end with some final
considerations in Section 7 where we also suggest some guidelines for
the practitioners.

2. Related work

Until recently, the statistical tools to attack the problem of determin-
ing the number of components in PCA consisted mainly in methods
developed in the field of psychometrics (like Bartlett's test for the first
component [11], the sphericity test [12], the Kaiser–Guttman's 1 rule
[24]) or chemometrics (like Malinowski's F-test [13] and the Faber–
Kowalski test [25]). All these methods suffer from the drawback of
being of limited applicability, either because restricted to the first
component, derived under assumption rarely met in real practice or
lacking a solid statistical background as they rely on approximated
distributions from which deliberating on data dimensionality.Most sta-
tistical methods are based on eigenanalysis and attempt to distinguish
between eigenvalues of the sample covariance matrix associated to
systematic variation and eigenvalues due to noise.

Only recently, results from RMT provided a solid and firm statistical
foundation to correctly describe the distributional properties of the
behavior of noise eigenvalues. The main result was the finding that
the so-called Tracy–Widom distribution is the limiting distribution of

the largest eigenvalue(s) of random sample covariance matrices. This
finding, expressed by Johnstone's theorem [26], opened the way to a
long-sought inferential dimensionality assessment in PCA.

Like any other statistical test, RMTmethods are based on assumptions
like certain distributional properties of the data or precise structures of
the covariance model under which the null model for noise eigenvalues
is derived. Although these assumptions can be mild, they cannot be
always met or verifiable in practice. For this reason, it is of interest to
benchmark and compare the performance of such methods together
with that of methods that do not require distributional assumptions.

A class of methods fulfilling these requirements is that of cross-
validation (CV) methods. In contrast with statistical methods that
focus on the eigenvalues of the sample covariance matrix, CV methods
try to reproduce the error estimation procedure when applying a
model on new/independent data [27–29].

The idea of applying a cross-validation method to identify the
dimension that best describes the systematic variation in data dates
back to the seminal paper by Wold [30]. In general, in the cross-
validation the data in X is partitioned in G groups and at each step a
PCA model is fitted using G-1 groups. Then the data in the left out
group is predicted using the model. A criterion of goodness of fit is
then defined and the procedure is repeated for 1, 2,… components.
The optimal number of components is then estimated by inspecting
the shape of the goodness offit curve. Several cross-validation strategies
have been proposed: in this studywewill focus on the so called element
wise k-fold ekf cross validation (see Section 3.2 formore details), a tech-
nique that has been found to perform very well in comparative studies
[4] and that has recently received a lot of attention at both the theoretical
and applicative levels [5,31].

Disposing distributional properties comes at a cost: cross-validation
methods are time consuming and although nowadays calculation
power is not a limiting factor, it may not be practical to use them
when (extremely) large data sets are considered, like, for instance, in
modern functional genomics. Also, CVmethods are not universally suit-
ed to determine the optimal number of components in all situations en-
countered in data analysis andmodeling. The cross-validation approach
considered in this paper is based on the prediction error, meaning that a
specific piece of data is not used to compute its own prediction. Strictly
speaking, the prediction error is only suited suitable to select the num-
ber of componentswhen the goal of the PCAmodel is to performpredic-
tions, for instance in missing data imputation. Still, this approach might
be useful in other contexts as a heuristic indicator.

To overcome the problem of computational time, Josse and Husson
[18] recently proposed to approximate the cross-validation procedure
by an original interpretation of PCA as a smoothing operator. In such a
way they provide two different approximations of another well-known
cross-validation method, the so called expectation–maximization, an ap-
proach also found to performwell in [4]. Nonetheless, we will show that
these approximatedmethods carry on some characteristics of the original
cross-validation algorithm.

3. Methods for determining the number of principal components

In this Section, the methods under comparison are introduced.
Methods were proposed in different research areas. As a result, their
definition to the problem of selecting the number of components, in-
cluding the consideredmodel of noise, varies. The input of the methods
reflects these differences. Thus, somemethods take as input the matrix
of data while others operate over the eigenvalues. Here, we propose a
taxonomy based on the class of input, which in turn is determined by
the model of noise under consideration.

A data matrix X is characterized by both the distribution of the
observations and the relationships among the variables (covariances).
As shown in [32], very different data samples can lead to the same sam-
ple covariance matrix: the covariance matrix can be seen as a summary
of the data where the information about the distribution of the
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