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The reduction of the rotational ambiguity inmultivariate curve resolution problems is a central challenge in order
to construct an effective chemometric method. Soft modeling is a method of choice to solve this problem.
The aim of this paper is to demonstrate the impact of soft constraints on the full set of all feasible, nonneg-
ative solutions. To this end the starting point is the Area of Feasible Solutions (AFS) for a three-component
system. Then soft constraints, namely constraints on the unimodality, monotonicity andwindowing for cer-
tain concentration profiles, are used in order to reduce the AFS. This process extracts chemically meaningful
solutions from the set of all feasible nonnegative factors and demonstrates the mode of action of soft con-
straints. Results are presented for a model problem as well as for FT-IR data for a catalytic subsystem of
the rhodium-catalyzed hydroformylation process. Typically, the AFS can significantly be reduced by adding
soft constraints.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Multivariate curve resolutionmethods aimat decomposing sequences
of spectra taken from a multi-component chemical reaction system into
the underlying contributions from the pure components. If these spectra
are collected row-wise in a matrix D, then the Lambert–Beer law says
that D can approximately be factored into a product of amatrix C contain-
ing column-wise the concentration profiles of the pure components and a
matrix A containing row-wise the associated pure component spectra,
that is

D ¼ CA: ð1Þ

In general, the factorization (1) is not unique and continua of possible
nonnegative solutions exist. This observation was first made by Lawton
and Sylvestre in 1971 [1] for two-component systems; see also the
introduction to model-free analysis and rotational ambiguity in [2]. In
1985, Borgen and Kowalski extended the approach of Lawton and

Sylvestre to three-component systems [3]. This work was continued by
Abdollahi and Tauler [4] and Rajkó [5]. However, it is a main interest of
chemists to find within the continuum of possible nonnegative factor-
izations the “true” or “chemically correct” solution. To determine a sin-
gle solution is a typical trait of model-based methods. Many such curve
resolution methods exist [2] which use soft constraints and/or hard
models in order to compute a factorization (1) so that the factors fulfill
certain conditions. The development of MCRmethods is a highly active
and wide research area; the references [6–9] represent only possible
examples.

A fundamentally different approach is to compute the set of all possi-
ble nonnegative solutions and afterwards to reduce the set of solutions by
applying various constraints. In the best case only a single and thus
unique solution can be extracted. For the computation of the set of all so-
lutions, Section 3 explains the details, we use its low-dimensional repre-
sentation in the form of the Area of Feasible Solutions (AFS) [3,10–12].
An alternative way for the reduction of the rotational ambiguity by
means of soft constraints is to start with a computation of the minimal
and maximal band boundaries for each part of the solution [13–15]. In a
second step the effect of soft constraints can be studies on changes of
the minimal and maximal band boundaries. The results of the AFS and
of the band boundaries approaches are similar, see [16]. Here we follow
the AFS approach as it contains the detailed information on each feasible
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factorization. Furthermore, the band boundaries can always be generated
from theAFS,whereas the band boundaries donot allow to reconstruct all
feasible factorizations.

The aim of this paper is to demonstrate the impact of soft constraints
on the solutions represented by the AFS and to present a hybrid approach
which combines the conceptual rigor of anAFS computationwith the suc-
cessful regularization techniques underlying soft constraints. The
resulting method allows to extract chemically meaningful solutions
from the set of feasible nonnegative factors. Recently Beyramysoltan
et al. [17,18] presented similar results in the context of equality
constraints.

1.1. Organization of the paper

In Section 2 a short introduction is given to the basics of multivariate
curve resolution methods. The idea behind the AFS is reviewed in
Section 3. The key concept, namely how to combine soft constraints
with AFS computations, is presented in Section 4. Applications to a
model problem and to experimental FT-IR spectroscopic data are
contained in Sections 5 and 6.

1.2. Notation

Throughout this paper, variable names for matrices are capital letters.
The colon notation [19] is used to extract columns and rows from matri-
ces. For a matrixM ∈ ℝm × n its ith row is

M i; :ð Þ ¼ mi1;…;minð Þ

and its ith column is

M :; ið Þ ¼
m1i
⋮
mmi

0
@

1
A:

The (i, j)-element of the matrix M is written in the two equivalent
formsMij=M(i, j). Vectors are written either by using the colon notation
or by lower case letters.

The pseudo-inverse of the matrix M is denoted by M+ and the
Frobenius norm ‖M‖F is the square root of the sum of all squared matrix
elements.

2. Multivariate curve resolution

The Lambert–Beer law in matrix form (1) poses the problem to find
for a sequence of spectra, which are collected in the columns of the data
matrix D ∈ ℝk × n, the unknown factors C ∈ ℝk × s and A ∈ ℝs × n. Therein
s is the number of independent chemical components of the given reac-
tion system. As already mentioned, the factors C and A are not unique
but many nonnegative factorizations exist. For the actual computation
of such factorizations a singular value decomposition D = UΣVT of the
spectral data matrix is the starting point [20,21]. Such a rank-s decompo-
sition (or rank-s approximation if singular values smaller than a certain
threshold value are ignored) has the form

D≈UΣVT ¼ UΣT−1|fflfflfflffl{zfflfflfflffl}
¼C

TVT|ffl{zffl}
¼A

ð2Þ

with the matrices U and V of left and right singular vectors. According to
Eq. (2) the s× s regularmatrix T allows to represent all possible factoriza-
tions just by linear combinations of the rows of VT in the form A = TVT.
Similarly, the columns of UΣ are used to build the concentration factor
in the form C=UΣT−1. Consequently, Eq. (2) reduces the degrees of free-
dom of possible factorizations from (k+ n)s variables, that is the number
of matrix elements of C and A, to only s2 variables, namely the number of
matrix elements of T.

Without loss of generality the pure component spectra can be cali-
brated in a way that all matrix elements in the first column of T are
equal to 1 so that

T ¼
1 t12 … t1s
⋮ ⋮
1 ts2 … tss

0
@

1
A: ð3Þ

Thus only (s − 1)s degrees of freedom are remaining, see [22,3,
11,23–25]. The precise justification for this calibration is that any
pure component spectrum is guaranteed to always have a contribu-
tion from the first right singular vector. This is a result of the Per-
ron–Frobenius theory of nonnegative matrices, see [24] for the
details. Nonnegativity of the factors, i.e. C, A ≥ 0, is a basic require-
ment. Unfortunately, the nonnegativity constraint is in most cases
not sufficient for a unique solution. Usually, there are many nonneg-
ative solutions and many associated feasible matrices T representing
these solutions. The method of choice in order to reduce these sets of
feasible solutions is to formulate additional soft constraints which
the solutions should fulfill, see [6,21,26]. Typical examples are con-
straints on

1. the unimodality of the concentration profile
2. the smoothness of the concentration profiles or spectra profiles
3. the windowing of the concentrations or the spectra.

Soft constraints are required to hold at least approximately. In con-
trast to this, hard modeling always forces that a certain solution
completely fulfills the constraint. Typically, kineticmodels for the chem-
ical reaction are used in the form of hard models, see e.g. [6,27].

3. The area of feasible solutions

While multivariate curve resolution (MCR) methods by means of
soft/hard modeling aim at computing a single factorization D ≈ CA,
the most general approach to the MCR problem is to compute the
set of all possible (feasible) factorizations with componentwise non-
negative factors C and A. How to describe such a set of all possible
nonnegative factorizations? For two-component systems an answer
was given in 1971 by Lawton and Sylvestre [1], see also [22,28]. For
three-component systems this representation problem is for in-
stance treated in [18,3,29,10,30,11,12,24]. For four-component sys-
tems a first solution has been presented in [31]. No solutions are
known for systems with more than four components.

The key idea for the low dimensional representation of the set of fea-
sible factorizations is to consider

1. only one of the factors, either A or C, as one factor also determines the
other factor. Without loss of generality we consider the factor A for
this discussion.

2. only the first spectrum or the first row of A, since the order of the
rows of A can freely be selected (as a solution D= CA always implies
further solutions with row-permuted A and column-permuted C).

3. only the matrix elements x := (t12,…, t1s) of T as these elements ac-
cording to Eq. (2) uniquely determine the first row of A, that is the
first spectrum.

These three reduction steps allow to represent the set of all nonneg-
ative spectra for an s-component system by the following set of (s− 1)-
dimensional row vectors

M ¼ fx ∈ℝ1� s−1ð Þ : a regular matrix T exists with
T 1; :ð Þ ¼ 1; xð ÞandC;A≥0g ð4Þ

where C, A and T are given by Eqs. (2) and (3). The set M is called the
AFS. In Eq. (4) the AFS is characterized for the spectral factor. Similarly
the AFS can be defined for the concentration factor.
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