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Many phenomena in practical processes cannot be accurately described by conventional differential equations,
while fractional order differential equations can describe the characteristics of such processes more accurately.
In this paper, the fractional order predictive functional control (FPFC) method is designed for a class of single-
input single-output (SISO) fractional order linear systems. The Oustaloup approximation is employed to derive
the approximate model of fractional order system. Meanwhile, the Grünwald–Letnikov (GL) definition and the
fractional calculus operator are used in its cost function, which further extend the applications of fractional
order calculus to the predictive functional control algorithm. And then the optimal control is obtained. Compared
with traditional predictive functional control based on integer reduced order model, simulation results reveal
that the fractional order controller yields improved control performance.
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1. Introduction

The theory of fractional order calculus can be traced back to
300 years ago, but its application in the field of control engineering is
nearly 20 years [1]. This study extends the use of calculus to not only in-
teger order but also fractional order systems. One of the reasons maybe
that a lot of phenomena cannot be accurately described by the integer
order differential equations in realistic physical systems and the frac-
tional order differential equationmodels can bemore accurate than tra-
ditional integer ordermodels to express the characteristics of the actual
systems [2]. For this purpose, fractional order calculus has been used to
model the complex industrial processes by several researchers [3–5].
Meanwhile, in [6], the recursive least-square method and recursive in-
strumental variable algorithm were used to estimate the parameters
of fractional order models with generalized ARX structure. Madakyaru
et al. proposed an approach to reconstruct the ARX models using the
fractional order differential operators and orthonormal basis filters. In
their paper, themodels were identified from input–output perturbation
data using a two-step nested optimization scheme and the experi-
mental studies on practical benchmark heater-mixer setup shows the
feasibility of this method [7].

In the field of control systems, the PDμcontroller [8], CRONE con-
troller [9] and PIλDμ controller [10] were proposed sequentially in the
20th century. With the wide use of PID controllers in industries, more
and more studies involving fractional order calculus have been done

to explore better design methods for fractional order control systems
in recent years. For example, Yeroglu and Tan [11] presented the design
techniques of fractional order PID controllers, and the Ziegler–Nichols
method and Åström–Hägglund method were applied for the tuning of
their controller parameters. In [12], a genetic algorithmwas introduced
to improve the accuracy of the designed fractional order PIλDμ control-
ler. A tuning graphical method of fractional order PID controller was
studied in [13] and a tuning graphical method for fractional order
PIλDμ controllers was proposed on the basis of the sensitivity function
constraint of the closed-loop transfer function in [14]. Jin et al. proposed
a model reduction method and an explicit PID tuning rule for the PID
auto-tuningbased on fractional order system in [15]. In [16], the authors
clearly came to the conclusion that a fractional order controller can ob-
tain better performance than integer order controller for fractional
order systems. As a consequence, a study of the fractional order control
theory and its application in the field of practical process control is of
great significance.

On the other hand, themotivation of the research on fractional order
calculus is that fractional order models can fit the actual data more pre-
cisely and flexibly than integer order models and the outstandingmerit
of the fractional order model has laid a good foundation for model pre-
dictive control (MPC) based on process models. Predictive functional
control (PFC) is one type of model predictive control technologies and
it has been proposed by Richalet to control the dynamic system [17].
In this strategy, the control input is derived by solving the difference be-
tween the future predicted output and the desired trajectory by mini-
mizing the cost function. PFC is the most popular one which has been
widely used in research and practical control engineering that also
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reveal good control effect [18,19]. In [20], the online recursive least-
squares identification and the self-adaptive predictive functional con-
trol algorithm were applied to the temperature control system. For
complex nonlinear systems, the PFC methods based on fuzzy models
were presented by lots of scholars [21–23]. Also, a predictive functional
controller based on extended state space model was developed and it
shows good control performancewhen it was comparedwith tradition-
al state space PFC in [24,25]. The extended state space process predictive
functional control algorithm based on genetic algorithm optimization is
designed for batch processes under actuator faults in [26]. Based on the
extended state space PFC method, Tao et al. designed a controller with
the linear quadratic form to deal with the process under partial actuator
failures in [27]. The extended state space PFC algorithms based on
decoupling strategy that uses the adjugate matrix of the process [28]
or partially decoupled scheme [29] have also been used for multivari-
able processes. In addition, based on the optimization idea, PFC was
used to optimize the PI or PID controllers to obtain the advantages of
both PFC and PID [30–32]. Though successful in process control, most
PFC strategies are for integer order systems.

At present, several studies on the combination of fractional order
calculus and MPC algorithm have been applied prosperously. The pre-
dictive functional controller based on state space model has been pre-
sented for fractional order systems and the two basic functions were
considered in [33]. In [34], the GL definition was used to discretize the
fractional order system and the fractional integral was considered in
the cost function. The excellent performance of the designed non-
minimal state space fractional order predictive functional controller
for fractional order systemswas displayed on the thermal fractional sys-
tem. In [35], the adaptive generalized predictive control (GPC) algo-
rithm was designed for fractional order dynamic model of solid oxide
fuel cells. In [36–37], Romero et al. proposed a new GPC algorithm for
fractional order systems and the fractional order operators were used
in its cost function. The numerical approximation model and Oustaloup
approximation model were used to predict the future dynamic output
of the system, and the proposedMPC for fractional order control system
achieved satisfactory performance by Rhouma et al. in [38–39]. Based
on time domain, Guo et al. proposed some new control methods
which combine the virtues of the fractional order PID algorithm and
predictive control algorithm [40–42]. Moreover, Joshi et al. proposed
anMPCmethod that can track the reference signals with limited uncer-
tainties for fractional order systems. In particular, the Laplace transform
of Caputo fractional order calculus and Mittag–Leffler function (MLF)
were used to evaluate the process output. However,MPCwas employed
in a fractional order system with the fractional order α with 0bαb1
[43]. As shown above, the research on PFC for fractional order systems
is limited in quantity and there are still requirements for new methods
to achieve better performance of fractional order predictive controllers.

The main aim of our study is to develop a new approach to control
the fractional order system and further improve the performance of
the control system when compared with the integer order PFC since
the industrial processes are fractional order systems in essence. In this
paper, the proposed controller has been designed for the system de-
scribed by SISO linear fractional differential equations. In addition, the
fractional order derivative in the cost function of fractional PFC (FPFC)
algorithm is expected to enhance the performance because of more
tuning parameters. The proposed FPFC algorithm design is as follows.
First, the input–output process model has been derived from the
Oustaloup approximation of fractional order transfer function. Second,
the predicted output is transformed into the matrix-form prediction.
Then, the GL definition will be utilized to discrete the fractional order
cost function. This method has such features as simple calculation,
strong robustness, and strong anti-interference ability. Finally, FPFC
shows good performance when it is successfully employed to practical
heating furnace process.

The paper is organized as follows. In Section 2, the basic knowledge
of fractional order calculus is described. In Section 3, the design of FPFC

for fractional order systems is presented. Firstly, we use Oustaloup ap-
proximation method to approximate fractional order operator sα, and
the model of the fractional controlled process is obtained. Then, based
on the obtained model, the integer order PFC is extended to the non-
integer order predictive functional control to get the optimal control
law. In Section 4, some simulation results are done to verify the perfor-
mance of the FPFC controller on a heating furnace. Conclusion of the
proposed method is drawn in Section 5.

2. Fractional order calculus

Fractional order calculus is expanded from traditional calculus,
which allows the differential and integral equations to be of fractional
orders instead of integer orders.With the rapid development of the the-
ory of fractional calculus, several definitions available for fractional cal-
culus are defined consecutively. There is no single definitions of
fractional calculus so far. The three commonly used definitions are
Grünwald–Letnikov (GL), Riemann–Liouville (RL), and Caputo defini-
tions [44].

The GL definition of fractional order calculus is described as follows:
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Considering the practical process and the short-term memory char-
acteristics of fractional order calculus operator, the sample time Ts is
substituted for calculating step h. For simplicity, we denote Dβ≡ aDt

β

with zero initial conditions, Eq. (1) can be converted into the following
form:
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where, n=[(t−1)/Ts].
The RL definition of fractional order calculus can be defined as
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where, m−1bβbm , m∈N, and Γ(⋅) is the Euler's gamma function:
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The Caputo definition of fractional order calculus is described as
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The Laplace transform of RL fractional calculus is:
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