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An accurate model is the premise for successfully implementing fermentation process optimization. Most
data-driven models that are widely applied to fermentation processes are unfit for optimization or provide low
precision. This paper presents a new data-driven modeling method for directly developing an ANN-based
differential model that is fit for optimization. Moreover, this model can provide high precision because it can
be discretized using the sampling period of the control variables as the step length. The lack of data pairs is ad-
dressed by transforming the model-training problem into a dynamic system parameter identification problem.
Further, a particle swarm optimization algorithm with a time-varying escape mechanism (PSOE) is constructed
to determine themodel parameters. Finally, the uniformdesignmethod is used to select themodel structure. The
results of experiments conducted using practical data for a lab-scale nosiheptide batch fermentation process
confirm the effectiveness of the proposed modeling method and PSOE algorithm.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Recent decades have witnessed the widespread use of fermentation
products in pharmaceuticals, chemicals, foods, energy resources,
and environment protection agents [1–4]. However, in general, such
products are produced in small amounts at high manufacturing costs.
This problem can be mitigated by the optimization of fermentation
processes (i.e., optimal control of fermentation processes) [5,6], which
requires an accurate process model for successful implementation.

The three modeling paradigms currently available for fermentation
processes are mechanistic modeling [7,8], data-driven modeling
[9,10], and hybrid modeling [11,12]. Mechanistic modeling and hybrid
modelingmethods require certain a priori knowledge about the process
being modeled; therefore, these modeling methods have some limita-
tions with regard to fermentation processes for which sufficient a priori
knowledge is not available. In contrast, data-driven modeling methods
can develop the model of a fermentation process exclusively from its
historical production data, with practically no a priori knowledge of
the process; hence, such modeling methods find wider use than mech-
anistic and hybrid modeling methods. Existing data-driven modeling
methods can be broadly classified into static modeling methods and
dynamic modeling methods. Static modeling methods commonly
develop the model of a fermentation process using current control var-
iables (e.g., temperature and pH) and current non-control variables
(e.g., carbon dioxide content of exhaust gases and oxygen uptake rate)
as inputs, and current state variables (e.g., biomass concentration and
substrate concentration) as outputs [13–16]. Because static models
involve non-control variables, they are usually employed for soft

sensing or processmonitoring; however, they are unfit for process opti-
mization. On the other hand, dynamic modeling methods commonly
develop the model of a fermentation process using past control
variables and past state variables as inputs, and current state variables
as outputs [17–21]. Thus, such dynamic models, in a certain sense, can
be regarded as data-driven mechanistic models expressed in discrete
form. They can be used not only for soft sensing and processmonitoring
but also for process optimization. However, the long sampling period
of state variables (a few hours or more) inevitably degrades the
discretization precision, and thus, the model precision; consequently,
optimization based on such models is unsatisfactory or may even fail.

This paper proposes a new data-driven modeling method for fer-
mentation processes that directly develops a data-driven differential
model for fermentation process optimization; hereafter, we refer to
this method as the data-driven differential modeling method. The
developed differential model can achieve high prediction precision via
discretization using the sampling period of the control variables as the
step length. Artificial neural networks have been widely employed for
effective data-drivenmodeling of various processes [22–24]. To develop
a fermentation process model, this study employs feed-forward neural
networks (FNNs), which have been successfully applied to various fer-
mentation processes [18,19,25,26], because they can approximate non-
linear relationships arbitrarily well [27]. Overcoming the lack of model
target outputs is a major challenge for the data-driven differential
modeling of fermentation processes. To this end, we transform the
model-training problem into a dynamic system parameter identifica-
tion problem in the present study.

The transformed parameter identification (TPI) problem is a com-
plex high-dimensional optimization problem. In general, it is difficult
to calculate the derivatives required by traditional optimization
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algorithms such as Newton's algorithm [28] and the least-squares
algorithm [29]. Hence, artificial intelligence (AI)-based optimization
algorithms such as the differential evolution (DE) algorithm [30], genet-
ic algorithm (GA) [31], and particle swarm optimization (PSO) [32] are
preferred for solving the TPI problem because they are applicable to
high-dimensional problems, do not require derivative information for
the objective function, and can perform global optimization [33]. In
particular, PSO exhibits useful characteristics such as simple structure,
ease of use, and fast convergence; therefore, it has been widely adopted
for various purposes such as function optimization, neural network
training, and parameter identification [34–36]. However, standard PSO
(SPSO) can easily fall into local optima, especially in the case of complex
high-dimensional problems [37] such as the TPI problem. In the present
study, an improved PSO algorithm, namely PSOE, is developed by
applying a time-varying escape mechanism to SPSO. Then, PSOE is
employed to solve the TPI problem in order to obtain the model
parameters, i.e., theweights and thresholds of the corresponding neural
networks. In addition, the selection of the model structure, i.e., the to-
pology of the corresponding neural networks, is discussed in detail.

The remainder of this paper is organized as follows: Section 2
describes the data-driven differential modeling method based on
FNNs and PSOE, including the basic concept of data-driven differential
modeling, the PSOE algorithm, the selection of the model structure,
and the determination of model parameters. Section 3 discusses the
application of the proposedmodelingmethod to a lab-scale nosiheptide
batch fermentation process, and presents the obtained results. Finally,
Section 4 summarizes our findings and concludes the paper with a
brief discussion on the scope for future studies.

2. Data-driven differential modeling of fermentation processes
using FNNs and PSOE

2.1. Data-driven differential modeling method

Fermentation process optimization requires a model that describes
the functional relationships between control variables and state
variables. In general, according to fermentation kinetics and the mass
balance principle, the functional relationships between control
variables and state variables can be described by the following set of
differential equations [38,39].

_x1 tð Þ ¼ f 1 v x
1 tð Þ; vu1 tð Þ� �

_x2 tð Þ ¼ f 2 v x
2 tð Þ; vu2 tð Þ� �

⋮ ⋮
_xm tð Þ ¼ f m v x

m tð Þ; vum tð Þ� �
⋮ ⋮

_xM tð Þ ¼ f M v x
M tð Þ; vuM tð Þ� �

8>>>>>><
>>>>>>:

ð1Þ

where xm (m = 1, 2, ∙∙∙, M) are the elements of the state vector x;
fm (m=1, 2, ∙∙∙,M) are the corresponding functions; vm

x denotes a vector
consisting of some state variables that are related to fm; and vm

u denotes
a vector consisting of some control variables that are related to fm.

Owing to the inherent complexity of fermentation processes, it is
usually difficult to derive concrete expressions for the functions fm
(m = 1, 2, ∙∙∙, M) from first-principles calculations. Therefore, the
proposed data-driven differential modeling method approximates
these functions using FNNs as follows.

_x1 tð Þ ¼ f̂ 1 vx1 tð Þ; vu1 tð Þ; θ1� �
_x2 tð Þ ¼ f̂ 2 vx2 tð Þ; vu2 tð Þ; θ2� �
⋮ ⋮

_xm tð Þ ¼ f̂ m vxm tð Þ; vum tð Þ; θm� �
⋮ ⋮

_xM tð Þ ¼ f̂ M v x
M tð Þ; vuM tð Þ; θM� �

8>>>>>>><
>>>>>>>:

ð2Þ

where f̂ m(m=1, 2, ∙∙∙,M) denote the FNN-based sub-models used to ap-
proximate the unknown functional relationships fm (m = 1, 2, ∙∙∙, M),
and θm (m = 1, 2, ∙∙∙, M) denote the parameter vectors corresponding
to them sub-models, i.e., theweights and thresholds of the correspond-
ing FNNs.

However, for practical fermentation processes, the available model-
ing data include only the measured data for the state and control
variables; hence, only inputs [vmx (t), vmu (t)] are available, whereas no tar-

get outputs _xm(t) are available to train the sub-models f̂ m(m=1, 2, ∙∙∙,M).
Thus, these sub-models cannot be trained using conventional methods.
Therefore, the proposed data-driven differential modeling method trains
each sub-model in the following two steps. First, θm (m=1, 2, ∙∙∙,M) are
regarded as parameter vectors to be identified in the dynamic system
described by (2); thus, the training procedure of the sub-models is trans-
formed into a dynamic system parameter identification problem. Second,θm (m=1, 2, ∙∙∙,M) are determined byminimizing the objective function
defined in (3) using only the measured data for the state and control
variables; consequently, all sub-models are trained without the need
for target outputs. The objective function is defined as

J θ1; θ2;⋯; θm;⋯; θMð Þ ¼

XB
b¼1

XHb

h¼1

XM
m¼1

xbhm−x̂bhm
xbhm

����
����

M �
XB
b¼1

Hb

ð3Þ

where b denotes the bth batch of training data; B is the number of
batches; h denotes the hth set of offlinemeasurements of state variables;
Hb is the number of state variable samples in batch b;m denotes themth
state variable;M is the number of state variables; and x and x̂ denote the
measured and predicted values, respectively.

There are two main concerns with regard to the development of an
accurate model for a fermentation process using the data-driven differ-
ential modeling method. The first one is how to solve the parameter
identification problem of the dynamic system described by (2) and
then obtain the parameters of each sub-model (i.e., the weights
and thresholds of the corresponding FNN). The second one is how to
select a suitable structure for each sub-model (i.e., the topology of the
corresponding FNN).

In the following sub-sections, first, a PSOE algorithm with a time-
varying escape mechanism is proposed. Then, the proposed algorithm
is employed to determine the parameters of each sub-model. Finally,
the structure of each sub-model is selected on the basis of the uniform
design method and the leave-one-out cross-validation technique.

2.2. PSOE

2.2.1. SPSO algorithm
PSO is a population-based heuristic optimization algorithm original-

ly proposed by Kennedy and Eberhart [40]; it was inspired by the flock-
ing behavior of birds and schooling behavior of fish [41]. PSO involves a
swarm of particles that collectively move in search of the global opti-
mum. The particles search for the optimal solution by moving in the
D-dimensional search space, and the position of each particle s, which
can be represented by a D-dimensional vector ps = (ps1, ps2, …, psD),
corresponds to a candidate solution of the optimization problem at
hand, where s = 1, 2, …, S, and S denotes the swarm size. Initially, the
particles are randomly placed at different positions in the search
space. Each particle is assigned a fitness value that represents its perfor-
mance on the objective function of the problem. Next, an iterative
process begins, whereby the particles collectively move in the search
space. In particular, based on some random permutations, each particle
follows both its own best position that it has discovered, denoted by
pbests=(pbests1, pbests2,…, pbestsD), aswell as the best position discov-
ered by the entire swarm thus far, denoted by gbest=(gbest1, gbest2,…,
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