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When analyzing molecular spectra, optimizing the pretreatment method and the wavelength variable is always
an important issue. However, currently there are unsatisfied phenomena that select the same type of pretreat-
ment methodmultiple times in some results generated by previous common optimizing algorithms. Additional-
ly, the parameters and calculation priorities of the pretreatment methods cannot be optimized. To solve those
problems, an improved changeable size moving window partial least square (CSMWPLS) named pretreatment
method classification and adjustable parameter changeable size moving window partial least square (CA-
CSMWPLS) is presented.With regard to the chromosome construction of CA-CSMWPLS, there is a region for pre-
treatment method optimization and another one for wavelength variable optimization. In the former, the com-
mon pretreatment methods are classified into four different types such as smoothing, derivation, correction,
and standardization, and the parameters and calculation priorities of pretreatment methods serve as genes of
the CA-CSMWPLS chromosome. In the latter, there are changeable size moving windows that consist of window
position genes andwindowwidth genes. Moreover, a scale factor η is designed for reducingmodel complexity in
CA-CSMWPLS fitness function and a peculiar coding and a decoding rule are adopted in this algorithm. After test-
ing a group of corn and a group of gasoline spectra with CA-CSMWPLS, the model accuracy was significantly im-
proved, for the root mean square error cross validation (RMSECV) and root mean square error prediction
(RMSEP) of the corn spectra were 0.0028 and 0.0032, and those of gasoline were 0.165 and 0.170, respectively.
Furthermore, the optimized pretreatment methods and wavelength variables are more reasonable, the model
complexity is smaller, and the model robustness is stronger than other relative methods.
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1. Introduction

When some materials are exposed under special external photons,
the molecular spectra including ultraviolet, near infrared, infrared, and
Raman spectroscopy are generated because of the atom energy transi-
tion level. This technology has been applied in many industries based
on modern chemical analysis instruments whose output data usually
contain multi-co-linearity. Principle component regression (PCR) and
partial least square regression (PLSR) are generally accepted methods
to solve this problem [1]. Although those methods can be directly
used to analyze a full spectrum after projecting useful information
into high score loading vectors to filter noise of low score ones, some
documents show that the model performance could be enhanced by
reasonably selecting wavelength variables [2–5]. Until now, there are
two different selecting methods: discrete single wavelength selection
and successive interval wavelength selection. Knowledge-based selec-
tion [6], correlation coefficient selection [7], successive projections

algorithm [8], uninformative variable elimination [9], genetic algorithm
(GA) [4–5], and simulated annealing [10] belong to thefirst one. Interval
partial least square (iPLS) [11], backward interval partial least square
(biPLS) [12], synergy interval partial least square (siPLS) [13], moving
window partial least square (MWPLS) [14], CSMWPLS, searching com-
bination moving window partial least square (SCMWPLS) [15], and in-
terval random frog (IRF) [16] belong to the second one. The latter one
and its derivatives are becoming more and more popular than the for-
mer because the continuity of the absorption bands ofmolecular spectra
is considered capable of avoiding random system error and the influ-
ence of unconcerned ingredients.

During the process of modeling, spectra data pretreatment methods
selection is another important mission, especially for some complex
materials or some materials with weak information. There are about
four classes of common pretreatmentmethods, such as smoothing, der-
ivation, correction, and standardization [17]. Wavelength selection and
pretreatment method selection, to some extent, influence each other. A
specular chromosome encoding was proposed by Devos. In this algo-
rithm, the first p × 5 binary value bits denote p pretreatment methods,
and the following q ones denote q consecutive wavelengths. Although
thismethodwas applied in corn, pork, and sugar beet with good results,
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to more reasonably explain the optimized chromosomes, a new tech-
nology needs to be explored that only selects one pretreatmentmethod
[18–19]. Another kind of GA combined with ant colony optimization,
whose one bit denotes one category pretreatment method with sample
set partitioning based on joint X–Y distances (SPXY) [20] and Kennard–
Stone (KS) sampling, was presented by Allegrini and was successfully
applied in corn near infrared (NIR) analysis [21].

The previous methods used for co-optimizing pretreatment
methods and wavelength variables still have some disadvantages:
(1) one kind of pretreatment method exists in the same individual too
many times, which is difficult to explainwith chemometrics, (2) the pri-
ority of pretreatment cannot be optimized, and (3) the parameters can-
not be changed, which limits the export of better result.

To solve the above problem, improved CSMWPLS, named CA-
CSMWPLS, results are presented in this paper. The performance of the
spectra model has been enhanced by its special chromosome structure,
coding, and decoding rules after testing two different groups of near in-
frared spectra data.

2. Theory

2.1. The algorithm flow

Except for genetic selection, duplication, crossover, and mutation,
operations like traditional CSMWPLS derivations based on GA, CA-
CSMWPLS's chromosome is divided into pretreatment methods, and
wavelength variable regions that are constructed with non-negative
decimal integers to reduce computation complexity, as well as to flexi-
bly add and delete pretreatment method and its parameters. The algo-
rithm flow is as follows:

Step 1: Main program initialization.
This step includes inputting the spectra data and the analyte ingredi-

ent; subgrouping all of the samples, based on SPXY or other methods,
into modeling samples and testing samples with proportion 4:1 or
3:1; setting the window number, the range of window width, the elite
number of GA E, the number of completed independent runtime i =
0, themaximum loop number of independent runtime L, the population
of GA, the generation of GA, the number of completed GA operate time
g = 0, and the maximum loop number of GA operate G.

Step 2: Population initialization.
For accelerating the convergence speed of CA-CSMWPLS and in-

creasing the probability of selecting valuable information, 80% of CA-
CSMWPLS individuals' window positions are randomly distributed in
the useful regions, which are obtained byMWPLS, and the rest of the in-
dividuals are randomly initialized in the full spectra region. Here, the
valuable region is determined by a threshold.

Step 3: Model evaluation.
First, pretreatment method and wavelength variable information cor-

responding to pretreatment method and wavelength variable region are
obtained after decoding individuals. Second, based on leave-one-out
cross validation with the above method and wavelength variable infor-
mation, the performance of the best PLSR is calculated by the testing sam-
ples after calculating any individual's fitness. Here, the optimal latent
variable number selected for each individual is the first local minimum
RMSECV when constructing the PLS regression model in GA operation.

Step 4: Genetic operation.
The first E highest fitness individuals (the elite of GA) are directly

pulled out into the next loop, and the rest of them are dealt with in a ge-
netic operation. Let g= g+ 1, if g ≤ G, then go back to Step 3, else go to
Step 5.

Step 5: Output result.
Let i= i+ 1, if i ≤ L, then go back to Step 2, else output L time results

and the optimal one. The optimal result can be obtained with Eq. (1).
Here, C is the criterion for selecting the optimal result (the smaller the
better), Var is the number of selected variable number, RMSECV is ac-
quired by modeling samples, RMSEP is acquired by testing samples, and

Q is the selected latent variable number after optimizing with CA-
CSMWPLS;Ω1,Ω2,Ω3, andΩ4 are scale factors of the above four variables.

C ¼ Var�Ω1 þ RMSECV �Ω2 þ RMSEP�Ω3 þ Q �Ω4 ð1Þ

2.2. Coding rule

In our work, smoothing denotes Savitzky–Golay smoothing (SGS)
with two parameters, derivation denotes Savitzky–Golay derivation
(SGD) with three parameters, correction is classified into standard nor-
mal vitiate (SNV) andmultiplicative scatter correction (MSC), and stan-
dardization is classified into mean center (MC) and autoscale. Thus, the
pretreatment method region is defined by the first 11 genes for CA-
CSMWPLS, as shown in Fig. 1. Here, Ox∈[0–4] denote the priorities of
SGS, SGD, correction, and standardization; K1∈ [2–5] and K2∈ [2–5] de-
note the polynomial degree of the SGS and SGD; F1∈ [3–15] and F2∈ [3–
15] denote the polynomial window width; N∈ [1–2] denotes the order
of derivation; and P1∈ [1–2] and P2∈ [1–2] denotewhichmethod to use
for correction and standardization.

The wavelength variable region is defined by the rest of the other
genes,Wj and Lj denote the position and window width of the jth win-
dow, respectively, and the window numbers depend on the actual situ-
ation. For example, if W1 is 1100 and L1 is 200, then the first window
covers 1100–1299 nm, as shown in Fig. 1.

Finally, an individual chromosomewith 11+ n× 2 genes represent-
ed with non-negative decimal integers can be generated. Here n is the
window number.

2.3. Decoding rule

After genetic operations, CA-CSMWPLS chromosome is decoded by
the following rule: (1) a largerOx value correlates to a higher correspond-
ing pre-processing method priority; (2) if Ox = 0, the pre-processing
method x is abandoned for modeling; (3) if there are two or more than
two equal Ox, only the leftmost Ox is used for calculating; (4) F1 and F2
are converted into F⁎1 = F1 × 2 + 1 and F⁎2 = F2 × 2 + 1 to ensure
that these values are odd numbers; (5) if P1 = 1, the correction mode is
MSC, else it is SNV; (6) if P2 = 1, standardization mode is centralization,
else it is autoscale; (7) if some windows overlap, the overlapping wave-
length variables are calculated only once; (8) if some windows overstep
the boundary of spectra, the exceeded wavelength variable is deleted
from the input data set.

2.4. Fitness function

RMSECV, always considered as a criterion of PLSR, is acquired from
cross validation, which includes random subsets K-fold cross validation
(RSCV), contiguous blocks K-fold cross validation (CBCV), and venetian
blinds K-fold cross validation (VBCV). For RSCV, during the ith iteration,
an RMSECV is obtained when a combination of samples is constructed;
however, during the (i + 1)th iteration, an RMSECV⁎ is obtained when
another combination of samples is constructed. Because of the random-
ness of RSCV, RMSECV⁎ is not always smaller then RMSECV, and there
may be unstable RMSECV in optimal operation when the K N 1. As for
CBCV and VBCV, there are some combinations of certain samples not
employed to model [22]. So when K = 1, leave-one-out cross validation
is adopted in this paper. Moreover, with respect to the parsimonious
and robust performance model [23], a smaller latent variable performs
better. The fitness function is defined by Eq. (2):

f ¼ RMSECVþ η� Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ŷi−yið Þ2
n

s
þ η

�Q ; η∈
RMSECV

Q� −θ;
RMSECV

Q� þ θ
� � ð2Þ
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