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Quantitative structure activity relationships (QSAR) and quantitative structure property relationships (QSPR) are
established by a novel approach of additive modeling: boosting in block variable subspaces (BBVS). Different
families of 2D and/or 3D molecular descriptors explain the molecular structure from different points of view.
Hence, descriptors from different families could be regarded as variables in different variable subspaces. We de-
fine these subspaces as block variable subspaces. Boosting in these subspaces can extract information more effec-
tively and hence build a model of high quality. BBVS combines partial least squares (PLS) regression with a type of
gradient boosting in a stepwise way. It is capable of resisting overfitting, making it easier to select the number of
boosting iterations than to select the number of components of PLS.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In order to make full use of structure information in linear quantita-
tive structure activity relationship (QSAR) and quantitative structure
property relationship (QSPR) modeling, one tends to include as many
molecular structure descriptors as possible. The more descriptors are
used, the better the model is fitted. However, many descriptors used
in the model are correlated, and this makes the data highly collinear
or ill-conditioned, leading to a model of poor prediction ability [1].

There are two essential approaches to deal with the issue of
multicollinearity. One is variable (or feature) selection, choosing those
descriptors that fit the model best and removing the rest. The other is la-
tent variable method like partial least squares (PLS) and principal com-
ponent regression (PCR), which keeps all descriptors but controls
individual variable contributions. Neither approach is entirely free
from any issue. For the former, when hundreds of descriptors are in-
cluded in the model (which is very common in QSAR studies), it is al-
most impossible to make an exhaustive search for the best subset of
descriptors due to the computational complexity. In addition, one is
often anxious for missing informative descriptors when some variable
selection procedures are used, such as elastic net [2], genetic algorithm
[3] and simulated annealing [4]. For the latter, it is not always easy to de-
cide how many latent components should be included in the model. Too
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few components leads to underfitting so that the prediction is not ade-
quate, whereas too many components may lead to overfitting. The
model fits well but predicts poorly. Moreover, PLS and PCR may fail to
extract useful information hidden in descriptors and perform badly
even in a high dimensional feature space [5].

In the past decade, a new method of modeling called boosting was
brought into attention. It originated from the field of machine learning
[6,7]. The AdaBoost algorithm was proposed for regression models [8].
Later some other algorithms were developed [9,10,11]. Most of them
transformed regression issues into classification issues. Friedman et al.
[12] proved that boosting was an approximation to additive modeling
on the logistic scale and pointed out that it could be viewed as a gradient
additive model [13]. The additive model of boosting is a mixture of a
group of base learners. These base learners are built iteratively by al-
ways using a basic learning rule. In each step, a new learner is construct-
ed to connect the predictors (descriptors) X with the residuals of the
responses y that are not fitted by the previous learners. Later, a general
gradient descent boosting paradigm that is developed for additive ex-
pansions based on any fitting criterion is proposed by Friedman [14].
Biihlmann et al. [15] proposed a L,-boosting method based on a func-
tional gradient descent algorithm and the L-loss function. They applied
it to nonlinear learners. Regarding PLS components as variables in gradi-
ent descent directions, boosting partial least squares (BPLS) was devel-
oped [16]. It was demonstrated to be more resistant than classical PLS to
overfitting without losing accuracy. Other applications of boosting
methods in chemonetrics can be found in references [17-22].

The purpose of this work is to develop a new strategy of additive
modeling which is called boosting in block variable subspaces (BBVS).
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Table 1
The size of the block variable sub-matrices for the three data sets.

Size (samples x variables)

Block Index Data set 1 Data set 2 Data set 3
xM Chi 149 x 10 333x 10 207 x 8
X@ Kappa 149 x 4 333x7 207 x 4
X3 E-State 149 x 15 333 x 27 207 x 3
X® MEDV 149 x 16 333 x 47 207 x 6

BBVS manages to model the relationship between activity (property)
and molecular descriptors in two stages. At the first stage, a ‘gentle’
PLS regression model is built with a few the most important compo-
nents. These components represent the common information among
all of the molecular descriptors. At the second stage, the common infor-
mation is subtracted at first and then boosting starts to fit the residuals
from the first stage in the block variable subspaces. The performance of
BBVS is evaluated on three data sets.

2. Theory and methods
2.1. Partial least squares (PLS)

In general, linear regression model is one of the most preferable
models for QSAR and QSPR researches [19], which can be written as

y = XB+e- 1)

Here y is a nx 1 response vector containing chemical or biological
measurements, and X is a nx p predictor matrix, which is in general
composed of calculated variables based on graph theory and/or quan-
tum mechanics, including 2D and/or 3D molecular descriptors. Because
the number of the descriptors is generally larger than the number of
samples, PLS is usually used to solve Eq. (1). The matrix X can be
decomposed by PLS with k components as

X=t1p]+top5 +-+typp+Ey, =TyP} +Ey )

where t; and p; (i=1,2, -+, k) are the PLS score and loading vectors; Ej
is the residual matrix. With a proper k, TP}, represents the common in-
formation among all of the molecular descriptors.

The fitted y given by PLS with k components is

y=XBy. 3)
with 3, being the PLS regression coefficient.

2.2. Block variable subspace

Different families of 2D and/or 3D molecular descriptors, such as
molecular connectivity indices [23], Kappa indices [24] and atom-type
E-State indices [25], explain the molecular structure from different
points of view. Descriptors belonging to the same family are frequently
strongly correlated and may characterize “duplicated” information of
the molecular structure, while those from different families are

Table 2

Modeling results for the data set 1. k is the number of PLS components used at the first
stage of BBVS. Vj is the corresponding variance explained by the k PLS components. M is
the number of times of boosting iterations.

k RMSEF RMSEP R? Vie M

1 51.6882 73.49 0.9795 0.5477 1164
2 50.3804 70.6082 0.9805 0.6851 926
3 48.0551 57.3302 0.9822 0.9229 251
5 44,0301 57.9335 0.9851 0.9514 179
8 47.1150 58.5418 0.9829 0.9826 56
10 483831 63.9177 0.9820 0.9892 43
14 52.4380 64.5923 0.9789 0.9970 6

relatively independent. Balaban et al. [26,27] explored the connection
among commonly used topological descriptors and found that some of
them are quite similar. Therefore, descriptors from different families
could be regarded as variables in different variable subspaces. We define
these subspaces as block variable subspaces. There are intrinsic correla-
tions among variables from the same subspace. Thus, in this work, we
apply boosting in these block variable subspaces, managing to extract
information more effectively from the smaller subspaces and hence to
build a model of high quality.

2.3. Subtraction of common information

Assume the descriptors come from s different families, and thus the
data matrix X can be divided into s blocks:

X= x<‘>7x<2>,---,x<5>]7 @)

where X9 (j=1,2...,5) is a nx p; matrix with p; +p,+ ... +ps=p.
BBVS first builds a PLS regression model with a few the most important
components in the whole descriptor spaceX. These components contain
the common information among the s block variable subspaces. To pre-
vent from using duplicated information of the molecular descriptors,
the common information should be subtracted from the s block variable
subspaces before boosting starts. If k PLS components are used, then the
common information X, = T, P} can also be divided into s blocks accord-

ingly:
X = TP= (X" X2 X (5)

and this will lead to a corresponding division of the residual matrix Ej
as:

E,= [X“>—x§”.x<2>—x(2)

k2 k>

X=X = [ EP B (6)
EY(j=1,2,...,s) is the jth block variable subspace with the common
information being removed.

24. Boosting as an additive model

The major idea of boosting as an additive model is to sequentially
improve an additive regression model F(X) by absorbing a base learner
which fits the renewed residuals that have not been fitted by the previ-
ous models [14]. In each iteration step, the boosting algorithm manages
to find a new base learner f(X) that minimizes a loss function L(-) (such
as a square-error loss function) between y and F(X) + f(X). Then, the
new base learner f(X) is absorbed into F(X). Therefore, after M itera-
tions, F(X) can be estimated by an additive expansion of M base
learners,

M

FuX) = fn(X), (7)
m=1

where

fm(X) = argmingL(y, Fu—1(X) + f(X)). (8)

2.5. Boosting in block variable subspaces (BBVS)

BBVS is a two-stage approach. At the first stage, a PLS model is built
with a few the most important components to predict the response y
using the whole descriptor matrix X, and the initial residual of
predicting y is calculated. At the second stage, boosting as an additive
model is performed in block variable subspaces. A series of base learners
are sequentially added to the additive regression model. Each of these
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