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It is essential to predict aggregation-forming sequences for elucidation of proteinmisfoldingmechanisms and the
design of effective antiamyloid inhibitors. In this work, we predict and characterize self-assembled hexapeptides
by a quantitative sequence–aggregation relationship (QSAR) model, which involves characterization of factor
analysis scale of generalized amino acid information (FASGAI) and modeling of supporting vector machine
(SVM) with radial basis function kernel. The QSAR model achieves maximum accuracy of 78.33% and area
under the receiver operating characteristic curve of 0.83 with leave one out cross-validation on 180 training
hexapeptides. We determine “hotspots” and key factors that largely contribute to the self-assembly of these
hexapeptides by analyzing their sequence–aggregation relationships. We also explore the applications of the
present model, e.g., the first is to identify the aggregation-forming sequences within both β-amyloid peptide
(Aβ42) and human islet amyloid polypeptide (hIAPP) using a 6-residue slide window, and acquire good agree-
ment with previous experimental observations, the second is to perform in silico design of potential
aggregation-forming hexapeptides which are validated by all-atommolecular dynamics simulation and density
functional theory calculations, and the third is to predict the potential self-assembled tri-, tetra- and pentapep-
tides, in which hydrophobic amino acids such as isoleucine, leucine, valine, phenylalanine, and methionine
occur at higher frequencies. The presentQSARmodel is helpful for (i) predicting self-assembled behaviors of pep-
tides, (ii) scanning and identifying aggregation-forming sequences within proteins, (iii) understanding action
mechanisms of peptide/protein aggregation, and (iv) designing potential self-assembled sequences applied as
drug discovery and nano-materials.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In organisms, proteins will implement fold processing and matura-
tion after being coded by ribosomes, which is a process to search for
conformational stability and execute different biological functions [1].
Unfortunately, protein misfolding may not only lead to the existence
of abnormal conformation [2], but also bring out the occurrence of the
unfolding regions of proteins, which induces further protein aggrega-
tion [1]. So far, there are more than 20 kinds of illnesses related to
protein misfolding such as Alzheimer's disease, Parkinson's disease
and Type II diabetes [1,3,4]. Their common pathogenic characteristic is
that the protein secondary structures changed from random coil and
α-helix to β-folded or self-assembled amyloid deposition [5,6].

There has been a great deal of controversy about the pathogenic
mechanisms and theories of abnormal accumulation of proteins [7].
One of the most persuasive ideas is that the polypeptide fragments in

sensitive areas have caused protein aggregation [8]. Investigations on ag-
gregation characteristics of two representative proteins in Alzheimer's
disease,β-amyloid peptide (Aβ) and Tau protein, provide good interpre-
tations of the mechanism above [9]. It has been reported the 15–21
aggregation-forming segment (QKLVFFA) in Aβ with 42 amino acids
(Aβ42) could induce Aβ42 form amyloid fibrils [10–12], and the
VQIVYK sequence in Tau protein could bring out abnormal protein
aggregation [13]. Therefore, identification of aggregation-forming
fragments is helpful for elucidating mechanisms of protein aggregation
and designing antiaggregation inhibitors [14].

As we know, X-ray scattering, nuclearmagnetic resonance or electron
microscopy [15] are common experimental approaches used to observe
the structural features of proteins. However, separation and purification
of proteins commonly requires complicated parameters, and is a very
time, resource, and found consuming process [16]. Experimental testing
of all possible amino acid combinations is currently not feasible, which
makes computational methods for predicting structures and functions
of proteins very attractive [11]. Currently, there is an increasing number
of noteworthy methods for predicting protein functions from sequence
and structural data [11]. These methods can be generally classified
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into sequence-based and structure-based predictions [11,17]. Several
computational methods have been proposed to predict propensity for
aggregation-forming fragments. Tompson et al. proposed a 3D profile
method to identify fibril-forming segments in proteins [18]. Fernandez-
Escamilla et al. used a statistical mechanics algorithm, TANGO, based on
the physicochemical principles of β-sheet formation, extended by the as-
sumption that the core regions of an aggregate are fully buried, to predict
protein aggregation [19]. Garbuzynskiy et al. introduced two characteris-
tics involving the expected probability of hydrogen bond formation and
expected packing density of residues to detect amyloidogenic regions in
protein sequences [20]. It should be mentioned that molecular dynamics
(MD) simulations [21,22] and density functional theory (DFT) [23,24] cal-
culations can yield valuable information about the structural changes that
arise at the atomic level upon the formation of aggregation-forming frag-
ments, while such information is difficult to be experimentally obtained.
Prediction of protein functions from their structures is usually undertaken
when sequence-based methods have failed [17]. The aggregating behav-
iors of proteins/peptides are strongly determined by the intrinsic proper-
ties of their amino acid sequences [25]. Therefore, it is possible tomake an
accurate prediction about whether proteins/peptides will aggregate from
the knowledge of their sequences [26].

Our aim was to establish a quantitative sequence–aggregation
relationship (QSAR) model to predict the self-assembled characteristics
of hexapeptides. We explored the aggregation-driving forces as well as
hotspots and key factors with major contribution to peptide aggrega-
tion. The predictive model was then applied as (i) identification of
aggregation-forming fragments within Aβ42 and human islet amyloid
polypeptide (hIAPP) evaluated by comparison with experimental
observations, (ii) design of aggregation-forming fragments validated
by MD simulations and DFT calculations, and (iii) prediction of
aggregation-forming tri-, tetra-, and pentapeptides. This work is benefi-
cial to identifying aggregation-forming sequences, understanding
mechanisms of protein/peptide misfolding, and designing potentially
effective antiamyloid inhibitors or building blocks applied as nano-
materials.

2. Principles and methods

2.1. Data set

The training set was constituted by two datasets. The first dataset
was derived from the AmylHex dataset containing 158 hexapeptides
[18] (67 aggregation-forming and 91 non-aggregation-forming sam-
ples). The second dataset was derived from our own 22 hexapeptides
[14]. We built and applied a QSAR model based on Index of Natural
and Non-natural Amino Acids (NNAAIndex) to design about 8000
hexapeptides, then screened 22 hexapeptides to examine their self-
assembling properties and structural features using atomistic molecular
dynamics simulations and experiments such as atomic forcemicroscopy
and circular dichroism, and finally obtained 18 aggregation-forming
and 4 non-aggregation-forming samples [14]. Thus, a total of 180 train-
ing samples including 85 aggregation-forming hexapeptides as positive
samples and 95 non-aggregation-forming hexapeptides as negative
samples (Table S1) was used to train the QSAR model.

The predictive capability of the model was validated by one test set
including 109 experimentally identified hexapeptides (Table S2). The
test set including 48 positive samples and 61 negative samples was col-
lected by removing the duplicate or contradictory samples from 120
hexapeptides reported by Maurer-Stroh et al. [27].

2.2. Structure characterization

Factor analysis scales of generalized amino acid information
(FASGAI) proposed by our group [28] was used to represent the struc-
tural features of 180 training hexapeptides. Briefly, the FASGAI charac-
terized a total of 335 physicochemical and other properties for each of

the 20 natural amino acids, followed by clustering these 335 properties
into 6 fingerprint factors named as hydrophobicity, alpha and turn pro-
pensity, bulky property, local flexibility, compositional characteristics,
and electronic property (Table S3) [29]. Based on fingerprint factor
scores for each amino acid, the FASGAI method can generally represent
sequence and structural features of any peptide by simply constructing
6 × n matrices, where n is the number of residues. Thus, the structural
features of any hexapeptide can be readily characterized by a 6 × 6
FASGAI matrix.

2.3. Supporting vector machine modeling

Supporting vector machine (SVM), as a machine learning algorithm,
finds an optimal hyperplane to maximize the classification of the two
types of sample intervals [30]. In linearly separable cases, SVM con-
structs a hyperplane which separates two different classes of vectors
with a maximum margin. In nonlinearly separable cases, SVM maps
the input variables into a high-dimensional feature space with the ker-
nel function which can effectively deal with dimensional puzzledom,
calculation complexity, etc. In this work, the radial basis function kernel
was used for our SVMmodeling. The two parameters, the regularization
parameter C and the kernel width parameter γ, were adjusted based on
the accuracy criteria of leave one out (LOO) cross validation using a grid
search approach as follows: First, a possible interval of C (or γ) with the
grid space was provided. Then, all grid points of (C, γ) were tried to see
which one gave the highest cross validation accuracy. Finally, the best
parameters were used to train the whole training dataset and generate
the final model. The software LIBSVM 3.2 (http://www.csie.ntu.edu.tw/
~cjlin/libsvm/) was used to construct the SVM model.

2.4. Model validation

The validity of the establishedmodel was assessed by LOO cross val-
idation and external validation. In the LOO test, to avoid any biased pro-
pensity by using single randomly selected sample in the dataset, 180
samples were iteratively removed one at a time, and the predictive per-
formance was recalculated each time and then averaged by 180 times
[31]. In external validation, the test set was employed to validate the
predictive capability of the predictor.

2.5. Model evaluation

The predictive performance was evaluated using the statistical pa-
rameters as follows [32]: Accuracy (Acc), Sensitivity (Sn), Specificity
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Fig. 1. Parameters by the grid search with LOO cross validation on 180 training
hexapeptides. The SVM model peaks at Acc = 78.33% with C = 1 and γ = 0.25.
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