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One-class SVM (OCSVM)has beenwidely adopted inmanyone-class classification (OCC) applicationfields. How-
ever, when there are outliers inOCC training samples, theOCSVMperformancewill degrade. In order to solve this
problem, a new method is proposed in this paper. This method first identifies some “suspected outliers” and
removes them so as to obtain the decision boundary enclosing the “cluster core”. Then outliers are identified
by this boundary and are removed from OCSVM training. The effectiveness of this proposed method is verified
by experiments on UCI benchmark data sets and Tennessee Eastman Process data sets.
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1. Introduction

In recent years, data-driven fault detection has received increasing
attention [1–3]. In the process of chemical industry, the samples under
the normal operation condition are easy to obtain and are in large quan-
tities, but the fault samples are expensive to obtain and are very rare. In
this situation, the conventional binary or multiclass classification
methods are not suitable for fault detection, and the one-class classifica-
tion methods can be used. One-class classification (OCC) tries to de-
scribe the distribution area of the target class in the condition that
only target samples are available for training, so as to predict whether
a new sample belongs to the target class or not [4,5]. If theOCCmethods,
one-class support vectormachine (OCSVM) uses the kernel trick to deal
with nonlinearity, and its decision function is sparse in the number of
support vectors. Therefore, it is widely adopted [6–8].

Due to its potential application, OCSVM has received considerable
studies recently. For example, Liu et al. [9] assumed that the training
samples are uncertain, so they proposed to alternately train the OCSVM
models and optimize the location of each sample, so as to improve the
ability of OCSVM to deal with uncertain data. Khan et al. [10] pointed
out that the low variance directions in the training data carry crucial in-
formation for OCSVM. So they introduced into the OCSVMmodel a term
on covariance matrix of the training data, moving the resultant hyper-
plane toward the low variance directions. In order to overcome the limits
caused by a single OCSVM classifier, Krawczyk et al. [11] proposed to

assemble OCSVM classifiers. They first split the target class into several
clusters, then built the OCSVM models based on each cluster, and fused
their decisions at last. To further prune the classifier ensemble, they
proposed several criteria to measure diversity of classifiers [12] and
proposed to apply a metaheuristic optimization procedure to prune
and weight OCC ensembles [13].

To better describe the target class area, it is expected that the target
samples are sufficient and representative. However, in practice, target
samples often contain a few outliers, which distribute differently from
the majority of the target class but they are labeled as target [14,15].
They can be viewed as the counterpart of label noise in binary classifica-
tion [16]. Outliers in the target samples will negatively affect the perfor-
mance of OCC methods. Liu et al. [17] proposed an unsupervised
method to divide the corrupted training samples into two classes
(inliers and outliers) and then to clean up the outliers. As for the
OCSVM method, it determines its decision function only by some sup-
port vectors; therefore, its decision boundary is apt to be affected by
outliers [18,19].

To reduce the negative influence of outliers on OCSVM decision
boundary, Yin et al. [18] proposed to weight training samples according
to their distances to the center in the feature space. They first calculate
the total square loss center [20] of the training samples and the distance

di from this center to each sample xi. Then the weight d̂i related to di is

obtained by d̂i ¼ di;max=di, where di,max is the maximal distance. In this
way, smaller weights are expected to be given to outliers, so that less
punishment is triggered by excluded outliers, making it more likely
to exclude outliers. This method will be referred to as wOCSVM herein-
after. However, the outlier distribution area cannot be available in
advance, so it is difficult to give samples proper weights. Amer et al.
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[19] also tried to reduce outliers' negative influence by introducing
weights into OCSVM. They used the weights to modify the constraints
that samples should be located above theOCSVMhyperplane. However,
this modification is not proper. It makes the hyperplane located inap-
propriately, labeling many target training samples as negative. There-
fore, this method is not as reasonable as wOCSVM. Different from the
above method, which first weights samples and then trains OCSVM,
Amer et al. [19] proposed to find out the outliers during optimizing
the OCSVM hyperplane. They modified the optimization objective of
OCSVM by introducing a 0-1 variable ηi for each training sample, using
this variable to indicate whether xi is an outlier or not. The introduction
of this discrete variable makes it very difficult to solve the optimization.
So they relaxed the optimization problem and presented an iterative
algorithm. In each iteration, the sample with ηi = 1 is constrained to
be located above the OCSVM hyperplane, and the sample with ηi = 0
is not used for training this time. This method will be referred to as
etaOCSVM hereinafter. If ηi is not able to indicate outliers correctly in
some iteration, then the unidentified outliers would negatively affect
the result of this iteration and subsequent iterations. Therefore, this
method does not effectively reduce outliers' influence as expected.

In this paper, a newmethod is proposed to reduce the negative influ-
ence of outliers on OCSVM decision boundary. In this method, the
OCSVM parameter υ is adjusted systematically to select samples for
next round training so that the cluster core of training samples can be
enclosed by the OCSVM decision boundary. Then outliers are identified
by this decision boundary and excluded from the final OCSVM training;
therefore, their influence is reduced.

The remainder of this paper is arranged as follows: the second sec-
tion states the motivation; the third section proposes the newmethod;
the fourth section compares the proposed method with other relevant
methods on outlier contaminated data sets and on fault detection; the
last section concludes this paper.

2. Motivation

OCSVM tries to separate the training samples from the origin in the
feature space using a hyperplane b w, φ(x) N − ρ = 0 with maximum
margin,where xdenotes a sample andφ(x) denotes its image in the fea-
ture space.w and ρ are the normal vector and offset of the hyperplane,
respectively. The OCSVM optimization problem is written as follows
[21]:

min
w;ξ;ρ

1
2

wk k2−ρþ 1
υn

Xn

i¼1

ξi

s:t: w;φ xið Þh i≥ρ−ξi;
ξi ≥ 0; i ¼ 1;⋯;n

ð1Þ

where xi denotes training samples, n is the total number of training
samples, υ is a trade-off parameter, and ξi is the slack variable. This is
a convex optimization problem and can be solved via its dual problem.
The Lagrangian of (1s) is as follows:

L w; ξ;ρ;α;βð Þ ¼ 1
2

wk k2 þ 1
υn

Xn

i¼1

ξi−ρ−
Xn

i¼1

βiξi

−
Xn

i¼1

αi w;φ xið Þh i−ρþ ξið Þ
ð2Þ

where αi, βi ≥ 0 are the multipliers. By setting the derivatives of the La-
grangian with respect to the primal variables to zero, we obtain the fol-
lowing equations:

∂L
∂w

¼ 0⇒w ¼
Xn

i¼1

αiφ xið Þ ð3Þ

∂L
∂ξi

¼ 0⇒ αi þ βi ¼
1
υn

ð4Þ

∂L
∂ρ

¼ 0 ⇒
Xn

i¼1

αi ¼ 1 ð5Þ

After substituting Eqs. (3)–(5) into Eq. (2), we have the dual prob-
lem as shown in Eq. (6):

max
α

−
1
2

Xn

i; j¼1

αiα jk xi;x j
� �

s:t: 0 ≤ αi≤
1
υn

Xn

i¼1

αi ¼ 1

ð6Þ

where k(xi, xj) = b φ(xi), φ(xj) N is a kernel function. After the optimal
solution α is obtained, the constant ρ can be calculated by ρ =
b w, φ(xi) N, where xi is some sample whose corresponding αi ∈ (0, 1/

υn). Then the OCSVM decision function f ðxÞ ¼ ∑
n

i¼1
αikðxi; xÞ−ρ is ob-

tained, and the decision boundary is f(x) = 0. If a sample xB lies outside
of the decision boundary, i.e., f(xB) b 0, its ξB N 0. According to the KKT
conditions, βB = 0, so αB = 1/nυ. That is, the sample lying outside of
the OCSVM decision boundary becomes a support vector (SV), and its
αB = 1/nυ.

As for outliers in the training samples, they are defined in the litera-
ture as follows: “an outlier is an observation (or subset of observations)
which appears to be inconsistentwith the remainder of that set of data”
[14]; “outliers are data that do not obey rules considered normal for the
majority of the data elements” [15]. Outliers prevent the OCSVMmodel
from properly describing the distribution area of training samples. In
order to obtain a more general model and tolerate a certain fraction of
outliers, OCSVM allows some training samples to be located outside of
its decision boundary, and uses the parameter υ to adjust the number
of these outside samples [22].

However, it is shown in Eq. (3) that the normal vector of OCSVMhy-
perplanew is determined by the linear combination of themappings of
SVs. If an outlier is located outside the OCSVM decision boundary, it be-
comes an SV and thus affects the normal vectorw. Moreover, the value
of αi corresponding to this outlier is 1/nυ, the maximal value of the fea-
sible region for αi. This means the outliers do affect the hyperplane.

An example is used here to illustrate this shortcoming. First, 100
samples distributed in an “Ellipse” area are given. An OCSVM model is
trained on these samples, where the widely used Gaussian kernel is
adopted and its width parameter is set to s = 4.2 properly. No outliers
exist in the training samples now, so υ is set to υ = 0.01 to exclude no
sample. The OCSVM decision boundary is shown as the solid curve in
Fig. 1(a), and it describes the sample area properly. In Fig. 1, the solid
points denote the training samples, and the circles and the squares de-
note the support vectors right on the boundary (boundary support
vectors) and those outside the boundary (non-boundary support
vectors), respectively. Next, 5 sparse-distributed samples on the right
of this “Ellipse” are added into the training samples, and they are out-
liers to those original samples. If υ is still set to υ=0.01 in this situation,
then the decision boundary in Fig. 1(b) is obtained. It is obvious that this
boundary is negatively affected by the outliers, unable to properly de-
scribe the “Ellipse”. To avoid this situation, υ should be increased to ex-
cludemore training samples. υ is increased to larger values, υ=0.1 and
υ = 0.2, and the corresponding decision boundaries are shown in
Fig. 1(c) and (d), respectively. In Fig. 1(c), 8 training samples are exclud-
ed out of the boundary as non-boundary support vectors, but they do
not contain all the 5 outliers, so the outliers still affect the boundary.
In Fig. 1(d), all the 5 outliers become non-boundary support vectors,
located outside the boundary, but they still affect the boundary, drawing
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